首页> 外文学位 >Characterization of membrane-aerated biofilms for wastewater treatment.
【24h】

Characterization of membrane-aerated biofilms for wastewater treatment.

机译:膜曝气生物膜用于废水处理的表征。

获取原文
获取原文并翻译 | 示例

摘要

In a membrane-aerated biofilm (MAB), a gas-permeable membrane supplies oxygen to a biofilm growing on its surface. Stratification of microbial populations within the biofilm is important for achieving simultaneous nitrification and denitrification. The goal of this research was to characterize changes in MAB stratification and determine the effects of reactor conditions on nitrification and denitrification. Biofilms were grown in a flow-cell reactor under different conditions of oxygen partial pressure, fluid velocity, chemical oxygen demand (COD) concentration, and COD to ammonia-nitrogen (COD:N) ratio. Profiles of dissolved oxygen (DO) with depth were obtained with a microelectrode. Biofilm slices (100--300 mum) were analyzed for protein concentration by the Lowry method, respiratory activity by iodonitrotetrazolium chloride reduction, and populations of nitrifying and denitrifying bacteria by competitive polymerase chain reaction (cPCR).; Increasing fluid velocity from 2 to 14 cm/s resulted in increased oxygen consumption, biomass density, and respiratory activity. Populations of nitrifying and denitrifying bacteria increased with increasing fluid velocity as a result of increased mass transfer of substrate into the biofilm. Increasing the COD concentration from 40 to 200 mg/L resulted in an increase in thickness, density, and respiratory activity and a decrease in oxygen penetration depth. In an air-fed MAB, the increase in COD concentration resulted in a decrease in nitrifying bacteria due to increased competition for oxygen with aerobic heterotrophic bacteria. Increasing the available DO by feeding the membrane oxygen resulted in greater concentrations of nitrifying bacteria at the higher COD concentration. As COD:N ratio increased from 4 to 10, respiratory activity and microbial populations decreased. In particular, a high COD:N ratio and high COD concentration, produced conditions unfavorable for simultaneous nitrification and denitrification.; Model predictions were similar to the experimental results at low COD concentration (40 mg/L) and COD:N ratios (4), but tended to break down under conditions of high COD concentration (200 mg/L) or COD:N ratio (10). Suggested areas for improvement in the model include incorporating (1) biofilm structure heterogeneity, (2) assimilation of ammonia by heterotrophic bacteria, and (3) competition for nutrients between aerobic heterotrophic and nitrifying bacteria.
机译:在膜曝气生物膜(MAB)中,透气膜向在其表面生长的生物膜提供氧气。生物膜内微生物种群的分层对于实现同时硝化和反硝化非常重要。这项研究的目的是表征MAB分层的变化并确定反应器条件对硝化和反硝化的影响。生物膜在不同的氧气分压,流体速度,化学需氧量(COD)浓度和COD与氨氮(COD:N)之比的不同条件下,在流通池反应器中生长。用微电极获得深度的溶解氧(DO)轮廓。生物膜切片(100--300微米)通过Lowry方法进行蛋白质浓度分析,通过氯化碘硝基四唑鎓还原法进行呼吸活动分析以及通过竞争性聚合酶链反应(cPCR)分析硝化细菌和反硝化细菌的种群。流体速度从2 cm / s增加到14 cm / s导致氧气消耗量,生物量密度和呼吸活动增加。由于底物向生物膜的传质增加,硝化细菌和反硝化细菌的种群随着流体速度的增加而增加。 COD浓度从40 mg / L增加到200 mg / L导致厚度,密度和呼吸活动增加,氧气渗透深度降低。在空气喂养的MAB中,COD浓度的增加导致硝化细菌的减少,这是由于与需氧异养细菌对氧气的竞争增加了。通过供给膜氧来增加可用的溶解氧会导致较高的COD浓度下硝化细菌的浓度更高。随着COD:N比例从4增加到10,呼吸活动和微生物种群减少。特别地,高的COD∶N比和高的COD浓度产生了不利于同时硝化和反硝化的条件。在低COD浓度(40 mg / L)和COD:N比(4)的情况下,模型预测与实验结果相似,但在高COD浓度(200 mg / L)或COD:N比( 10)。该模型的改进领域包括(1)生物膜结构的异质性,(2)异养细菌对氨的吸收,以及(3)好氧异养细菌与硝化细菌之间的营养竞争。

著录项

  • 作者

    Cole, Alina Christianson.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Environmental.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号