首页> 外文学位 >Multiple Exciton Generation in Quantum Dot Solar Cells.
【24h】

Multiple Exciton Generation in Quantum Dot Solar Cells.

机译:量子点太阳能电池中的多激子产生。

获取原文
获取原文并翻译 | 示例

摘要

Photovoltaics are limited in their power conversion efficiency (PCE) by very rapid relaxation of energetic carriers to the band edge. Therefore, photons from the visible and ultraviolet parts of the spectrum typically are not efficiently converted into electrical energy. One approach that can address this is multiple exciton generation (MEG), where a single photon of sufficient energy can generate multiple excited electron-hole pairs. This process has been shown to be more efficient in quantum dots than bulk semiconductors, but it has never been demonstrated in the photocurrent of a solar cell.;In order to demonstrate that multiple exciton generation can address fundamental limits for conventional photovoltaics, I have developed prototype devices from colloidal PbS and PbSe quantum dot inks. I have characterized both the colloidal suspensions and films of quantum dots with the goal of understanding what properties determine the efficiency of the solar cell and of the MEG process. I have found surface chemistry effects on solar cells, photoluminescence, and MEG, and I have found some chemical treatments that lead to solar cells showing MEG. These devices show external quantum efficiency (EQE) greater than 100% for certain parts of the solar spectrum, and I extract internal quantum efficiency (IQE) consistent with previous measurements of colloidal suspensions of quantum dots.;These findings are a small first step toward breaking the single junction Shockley-Queisser limit of present-day first and second generation solar cells, thus moving photovoltaic cells toward a new regime of efficiency.
机译:光伏通过将高能载流子非常迅速地松弛到频带边缘而限制了它们的功率转换效率(PCE)。因此,来自光谱的可见和紫外部分的光子通常不能有效地转换成电能。解决此问题的一种方法是产生多个激子(MEG),其中具有足够能量的单个光子可以产生多个受激电子空穴对。已证明此方法在量子点上比块状半导体更有效,但从未在太阳能电池的光电流中得到证明。;为了证明多重激子的产生可以解决常规光伏技术的基本局限性,我开发了胶体PbS和PbSe量子点油墨的原型设备。我已经对胶体悬浮液和量子点薄膜进行了表征,目的是了解哪些特性决定了太阳能电池和MEG工艺的效率。我发现了表面化学作用对太阳能电池,光致发光和MEG的影响,并且我发现了一些化学处理方法导致太阳能电池显示MEG。这些设备在太阳光谱的某些部分显示出外部量子效率(EQE)大于100%,并且我提取出内部量子效率(IQE)与先前对量子点的胶体悬浮液的测量结果一致;这些发现是迈向第一步的小第一步突破了当今第一代和第二代太阳能电池的单结Shockley-Queisser极限,从而使光伏电池迈向了新的效率体系。

著录项

  • 作者

    Semonin, O. E.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Optics.;Materials science.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号