首页> 美国卫生研究院文献>Philosophical transactions. Series A Mathematical physical and engineering sciences >Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion
【2h】

Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion

机译:量子点中多重激子的产生与分子生色团中单线态裂变的太阳光子转化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Both multiple exciton generation (MEG) in semiconductor nanocrystals and singlet fission (SF) in molecular chromophores have the potential to greatly increase the power conversion efficiency of solar cells for the production of solar electricity (photovoltaics) and solar fuels (artificial photosynthesis) when used in solar photoconverters. MEG creates two or more excitons per absorbed photon, and SF produces two triplet states from a single singlet state. In both cases, multiple charge carriers from a single absorbed photon can be extracted from the cell and used to create higher power conversion efficiencies for a photovoltaic cell or a cell that produces solar fuels, like hydrogen from water splitting or reduced carbon fuels from carbon dioxide and water (analogous to biological photosynthesis). The similarities and differences in the mechanisms and photoconversion cell architectures between MEG and SF are discussed.
机译:半导体纳米晶体中的多激子产生(MEG)和分子生色团中的单重裂变(SF)都有潜力极大地提高太阳能电池在生产太阳能(光伏)和太阳能燃料(人工光合作用)时的功率转换效率在太阳能光电转换器中。 MEG为每个吸收的光子产生两个或多个激子,而SF从单个单重态产生两个三重态。在这两种情况下,都可以从电池中提取来自单个吸收光子的多个电荷载流子,并将其用于为光伏电池或生产太阳能燃料(如来自水分解的氢气或来自二氧化碳的还原碳燃料)的电池创建更高的功率转换效率和水(类似于生物光合作用)。讨论了MEG和SF之间的机制和光转换单元体系结构的异同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号