首页> 外文学位 >Developing a Method for Locating Ionizable Hydrogen Atom Positions in Protein Crystal Structures.
【24h】

Developing a Method for Locating Ionizable Hydrogen Atom Positions in Protein Crystal Structures.

机译:开发一种在蛋白质晶体结构中定位可电离氢原子位置的方法。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogen is perhaps the most important atom in a protein as it plays a key role in mechanistic enzymology, protein folding, protein engineering, and rational drug design. However, as hydrogen has only one electron, it is rarely observed in an X-ray diffraction experiment. The goal of this work is to develop a means of improving protein models with respect to H-atom placement, with the aim of creating a method of locating hydrogen atoms and determining protonation state for ionizable residues in protein crystal structures that does not exclusively depend on direct visualization of their electron density.;In order to accomplish this, the protein gamma-Chymotrypsin was subjected to study by both neutron and X-ray diffraction. The neutron diffraction studies allowed the direct observation of hydrogen (deuterium) atoms. The X-ray diffraction studies, conducted at ultra-high resolution and encompassing room and liquid nitrogen temperature, hydrogenated and deuterated buffer solutions, and changes in pH conditions, yielded precise information on the distances between ionizable oxygen and nitrogen atoms to atoms to which they are covalently bound as well as the distances between ionizable oxygen and nitrogen atoms to the heavy (non-hydrogen) atoms with which they interact non-covalently.;Neutron diffraction data collected to 2.0 A resolution at pH 5 and pH 7 have successfully identified the positions of hydrogen (deuterium) atoms on ionizable and exchangeable residues in the protein. The ultra-high resolution X-ray diffraction data, collected at a nominal resolution of 1.05 A for most data sets, has yielded the distance information outlined above for aspartate, glutamate, histidine, lysine, serine, threonine, and tyrosine residues. The examination of the covalent distances for aspartate, glutamate, and histidine has shown that these measures are accurate predictors of protonation (deuteration) state. For the remaining four residues, changes in the covalent and non-covalent distances are not accurate predictors of the presence of hydrogen or deuterium. The distances also show that the pK a of carboxylate residues is increased in certain instances at low temperature. This study should promote a re-examination of mechanistic conclusions drawn from liquid nitrogen temperature X-ray diffraction studies.
机译:氢可能是蛋白质中最重要的原子,因为它在机械酶学,蛋白质折叠,蛋白质工程和合理的药物设计中起着关键作用。但是,由于氢只有一个电子,因此很少在X射线衍射实验中观察到。这项工作的目的是开发一种改善H原子放置的蛋白质模型的方法,以期创造一种定位氢原子并确定蛋白质晶体结构中不完全依赖于电离残基的质子化状态的方法。为了实现此目的,对蛋白质γ-胰凝乳蛋白酶进行了中子和X射线衍射研究。中子衍射研究允许直接观察氢(氘)原子。在超高分辨率下进行的X射线衍射研究涵盖了室温和液氮温度,氢化和氘化的缓冲溶液以及pH条件的变化,从而获得了有关可电离的氧和氮原子到其所要原子之间距离的精确信息。是共价键合的,以及可电离的氧和氮原子与与之非共价相互作用的重原子(非氢原子)之间的距离。;在pH 5和pH 7下收集的中子衍射数据达到2.0 A的分辨率已成功鉴定出氢(氘)原子在蛋白质中可电离和可交换残基上的位置。对于大多数数据集,以1.05 A的标称分辨率收集的超高分辨率X射线衍射数据已得出上面概述的天冬氨酸,谷氨酸,组氨酸,赖氨酸,丝氨酸,苏氨酸和酪氨酸残基的距离信息。对天冬氨酸,谷氨酸和组氨酸的共价距离的检查表明,这些量度是质子化(氘)状态的准确预测指标。对于其余四个残基,共价距离和非共价距离的变化不是氢或氘存在的准确预测指标。该距离还表明,在某些情况下,在低温下羧酸根残基的pK a增加。这项研究应该促进对液氮温度X射线衍射研究得出的机械结论的重新检验。

著录项

  • 作者

    Lazar, Louis.;

  • 作者单位

    Brandeis University.;

  • 授予单位 Brandeis University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号