首页> 外文学位 >Formation of nanostructured ferromagnetic phases of iron, cobalt and nickel by a novel freeze-out technique and metathesis of chalcogenides.
【24h】

Formation of nanostructured ferromagnetic phases of iron, cobalt and nickel by a novel freeze-out technique and metathesis of chalcogenides.

机译:铁,钴和镍的纳米结构铁磁相的形成通过一种新型的冻结技术和硫族化物的复分解反应。

获取原文
获取原文并翻译 | 示例

摘要

The work presented here consists of two parts: The first focuses on the development of a novel Rapid Freeze-Out synthesis method for the fabrication of magnetic nanophases of Fe, Co, Ni and assorted binary systems. The second part concerns the synthesis and doping of alkaline earth sulfides with rare earth elements to enhance their luminescence properties for cathode ray tube phosphorescent material.; Rapid Freeze-Out versatile synthetical method was developed using high melting arenes to trap and control nanoparticle formation in statu nascendi of Fe, Co and Ni by matrix solidification from carbonyl precursors. The solid matrix was found to protect the particles from oxidation allowing long-term storage of these highly reactive materials. Nanoparticle formation in the 2--18 nm (Fe), 5--26 nm (Co) and 35--50 nm (Ni) range were confirmed by TEM micrographs. The Fe, Co and Ni phases exhibit superparamagnetism determined via SQUID measurements. XPS and XRD data indicate unusual electronic deshielding of the surface atoms. The developed synthesis approach has the potential for industrial scale-up and continuous manufacturing of nanoparticle materials in a wide range of compositions and stoichiometries demonstrated by fabrication of a variety (12) of binary nanophases using separate and single source precursors. Nanoparticle formation in the 6--26 nm range was confirmed for the FeCd phase. Very interesting results were obtained for the CoBi system with nanoparticles exhibiting the high pressure cubic Bi phase in the particle core with a rhombohedral shell. Other unusual phases were obtained with FeCu and FeCd. The developed synthesis allows access to intermetallic nanophases of immiscible metal combinations not possible in form of bulk alloys. It was shown that with the proper reaction design unusual nanophases are accessible, such as certain size clusters of one element surrounded by a nanophase matrix of another element as well as the fabrication of phases consisting of small particles of one composition coated with a layer of another material, promising the development of new materials with unusual properties.; In part two, chalcogenide metathesis reactions were studied. Metathesis reactions were used to synthesize CaS, SrS and their Eu-doped derivatives as well as HgCdTe (MCT) semiconductor nanophases. Phosphor materials such as SrS and CaS are of great interest because of their applications for use as cathode ray tube phosphorescent material due to their luminescent properties. A study of metathesis reaction to the formation of CaS and the Eu2+ doping of CaS for luminescence was preformed. Lastly, metathesis reactions to the formation of MCT nanoparticles and bulk powders were studied. MCT is of great interest because it allows the careful tuning of band gap. This can be used for applications in electronics such as solar cells and photoluminescence.
机译:这里介绍的工作包括两个部分:第一部分着重于开发一种新颖的快速冻结合成方法,用于制造Fe,Co,Ni和各种二元体系的磁性纳米相。第二部分涉及碱土金属硫化物的合成和掺杂稀土元素,以增强其对阴极射线管磷光材料的发光性能。开发了快速冻结多功能通用合成方法,该方法使用高熔点的芳烃通过羰基前体的基质固化来捕获和控制铁,钴和镍状态中的纳米粒子形成。发现固体基质可以保护颗粒免受氧化,从而可以长期存储这些高反应性材料。通过TEM显微照片确认了2--18nm(Fe),5--26nm(Co)和35--50nm(Ni)范围内的纳米颗粒形成。 Fe,Co和Ni相表现出通过SQUID测量确定的超顺磁性。 XPS和XRD数据表明表面原子具有异常的电子去屏蔽作用。发达的合成方法具有工业规模化和连续生产具有广泛组成和化学计量比的纳米颗粒材料的潜力,这通过使用单独的和单一来源的前驱物制造各种(12)二元纳米相得到证明。 FeCd相证实在6--26 nm范围内形成纳米颗粒。对于CoBi系统,获得了非常有趣的结果,其中纳米颗粒在带有菱形壳的颗粒核中显示出高压立方Bi相。用FeCu和FeCd获得了其他异常相。发达的合成方法允许进入不可能以块状合金形式存在的不混溶金属组合的金属间纳米相。结果表明,通过适当的反应设计,可以得到异常的纳米相,例如一种元素的某些尺寸簇被另一种元素的纳米相基质包围,以及由一种组成的小颗粒组成的相的制备,所述小颗粒的一种组成被另一种涂层覆盖材料,有望开发出具有非同寻常性能的新材料。在第二部分中,研究了硫族化物易位反应。易位反应用于合成CaS,SrS及其Eu掺杂的衍生物以及HgCdTe(MCT)半导体纳米相。诸如SrS和CaS之类的磷光体材料由于其发光特性而被用作阴极射线管磷光材料而备受关注。进行了关于CaS形成的复分解反应和CaS的Eu2 +掺杂的发光研究。最后,研究了生成MCT纳米粒子和散装粉末的易位反应。 MCT非常令人感兴趣,因为它允许仔细调整带隙。这可以用于电子设备中,例如太阳能电池和光致发光。

著录项

  • 作者

    Nguyen, Kimloan Thi.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Chemistry Inorganic.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 306 p.
  • 总页数 306
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:42:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号