首页> 外文学位 >Genetic and agronomic approaches for improving nitrogen use and maize productivity.
【24h】

Genetic and agronomic approaches for improving nitrogen use and maize productivity.

机译:遗传和农艺学方法,用于改善氮的利用和玉米的生产力。

获取原文
获取原文并翻译 | 示例

摘要

Several factors have large effects on maize grain yield including environment, nitrogen (N) supply, and hybrid genetics. Efficient and environmentally responsible use of N fertilizer is a cornerstone of high?yielding maize production, and improvements in maize N use will require a combination of agronomic, breeding, and biotechnology approaches. A maize hybrid's N use and productivity are influenced by its grain yield at low N (check plot yield; no fertilizer N applied), and its response (i.e., increase in grain yield) to fertilizer N application. Maize N use can be improved by focusing on one or both of these parameters; however, better N use will not be sufficient by itself to increase maize productivity. Plant density tolerance also should be considered due to the possible interactions of hybrid, N rate, and plant density, as well as the need to increase plant density as a strategy to increase yield per unit area. The broad questions addressed by this research were i) how has past genetic selection for grain yield affected the N response characteristics of modern hybrids, ii) what is the variation for N use traits in current commercial hybrids, iii) how do hybrid, N rate, and plant density interact, and iv) has biotechnology (e.g., transgenic corn rootworm protection traits) already made an impact on N use and productivity of maize? An array of field-based phenotyping experiments (different levels of N and plant density) was conducted between 2008 and 2011 in Illinois using hybrids from various sources to address these questions.;Evaluation of old and new hybrids under various levels of N supply showed that improvement for grain yield at low N (56 kg ha-1 yr -1) has contributed to about two-thirds of the improvement in grain yield at high N (86 kg ha-1 yr-1). Despite past improvement for low N tolerance, current commercial maize hybrids vary widely in their grain yields at low N with an average genetic range of 2.2 Mg ha -1. Tolerance to low N was also closely associated with the ability to withstand high plant density. Grain yield at low N was mostly related to differences in genetic N utilization, which quantifies grain yield per unit of plant accumulated N under unfertilized conditions. Improved N uptake, however, also affected low N grain yield in experiments which focused on the role of biotechnology derived corn rootworm protection traits on maize N use.;Past genetic improvement for grain yield resulted in a more modest increase in N response (increase in grain yield between low N and high N treatments; 30 kg ha-1 yr-1) compared to that for low N tolerance. Current commercial hybrids also vary widely for magnitude of N response (avg. range of 1.9 Mg ha-1) and the optimum N rate (57% to 164% of the mean) at which this response occurred. N uptake is one factor that heavily influences the response of grain yield to fertilizer N. As such, in addition to improved grain yield at low N, corn rootworm protected hybrids had larger responses to applied fertilizer N as a result of improved N uptake efficiency in some genetic backgrounds and environments.;Individual kernel weight is a largely untapped resource for improving maize yields, and several chapters of this dissertation highlight its importance. Responses of kernel number and kernel weight to increased N supply were negatively correlated, and kernel weight required a greater optimum N rate compared to kernel number. Thus, improving the rate of kernel weight gain per unit of applied N may be a promising strategy for improving N use efficiency. Grain yield increases resulting from the addition of the HERCULEXRTM XTRA trait to hybrids formed from the intermated B73 x Mo17 recombinant inbred line (IBM RIL) population were mostly associated with improved individual kernel weight, which may be attributable to greater post-flowering N uptake and enhanced stay-green.;In conclusion, genetic and agronomic approaches for improving maize N use and productivity should focus on i) grain yield at low N (stress tolerance and yield stability), and ii) enhancing fertilizer N use through strategies that simultaneously optimize kernel number and kernel weight responses to N application under increased plant density.
机译:几个因素对玉米籽粒产量有很大影响,包括环境,氮素供应和杂种遗传。氮肥的有效使用和环境责任制是高产玉米生产的基石,而玉米氮素使用的改善将需要农学,育种和生物技术方法的结合。玉米杂交种的氮素利用和生产力受其低氮时的谷物产量(检查地块产量;不施用肥料)及其对肥料氮素的响应(即谷物产量的增加)的影响。着眼于这些参数中的一个或两个,可以改善玉米的氮素利用。但是,更好地使用氮本身不足以提高玉米的生产率。还应考虑植物密度的耐受性,因为杂种,氮素比例和植物密度之间可能存在相互作用,并且需要增加植物密度作为增加单位面积产量的策略。这项研究解决的主要问题是:i)过去的谷物产量遗传选择如何影响现代杂交种的氮素响应特征; ii)当前商业化杂交种的氮素利用特性有哪些变化; iii)杂交种的氮素利用率如何? ,以及植物密度相互影响,并且iv)生物技术(例如转基因玉米根虫保护性状)是否已经对玉米的氮利用和生产力产生了影响?在2008年至2011年之间,伊利诺伊州进行了一系列田间表型试验(不同水平的氮和植物密度),使用各种来源的杂种来解决这些问题。;对不同氮供应水平下的新旧杂种的评估表明:低氮(56 kg ha-1 yr -1)下谷物产量的提高约占高氮(86 kg ha-1 yr-1)上谷物产量提高的三分之二。尽管过去对低氮耐受性已有改进,但目前的商业玉米杂交种在低氮条件下的谷物产量差异很大,平均遗传范围为2.2 Mg ha -1。对低氮的耐受性还与耐高植物密度的能力密切相关。低氮条件下的籽粒产量主要与遗传氮利用的差异有关,遗传氮利用率的差异量化了未施肥条件下每单位植物累积氮素的籽粒产量。但是,在研究中,侧重于生物技术衍生的玉米根虫保护性状对玉米氮素利用的作用的实验中,改善的氮素吸收也影响了低氮素的籽粒产量;过去遗传改良的籽粒产量导致氮素反应更为适度的增加(氮素增加)。低氮和高氮处理之间的籽粒产量;与低氮耐受量相比,增加了30 kg ha-1 yr-1。当前的商用杂种对氮素响应的幅度(平均范围为1.9 Mg ha-1)和发生这种响应的最佳氮素比率(平均值的57%至164%)也有很大差异。氮素吸收是严重影响谷物产量对肥料氮素响应的一个因素。因此,除了在低氮素条件下提高了谷物产量外,玉米根虫保护的杂交种对氮肥的吸收效率也得到了提高,对施用的肥料氮素有较大的响应。个体粒重是提高玉米产量的主要未开发资源,本论文的几章都强调了其重要性。籽粒数量和籽粒重量对氮供应增加的响应呈负相关,与籽粒数量相比,籽粒重量需要更大的最佳氮素利用率。因此,提高单位施氮量的籽粒增重率可能是提高氮利用效率的有前途的策略。向由确定的B73 x Mo17重组近交系(IBM RIL)群体形成的杂种中添加HERCULEXRTM XTRA性状而导致的谷物产量增加,主要与个体粒重的提高有关,这可能是由于开花后氮素的吸收增加和总之,改善玉米氮素利用和生产力的遗传和农艺方法应侧重于:i)低氮素下的谷物产量(胁迫耐受性和产量稳定性),以及ii)通过同时优化策略提高肥料氮素的使用种植密度增加对氮肥施用的籽粒数量和粒重的响应。

著录项

  • 作者

    Haegele, Jason Wade.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Agriculture Agronomy.;Agriculture Plant Culture.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号