首页> 外文期刊>Biological research: BR >Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency
【24h】

Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency

机译:农业环境中的氮气命运:农艺,生态生理和分子方法,以提高氮利用效率

获取原文
           

摘要

Nitrogen is the main limiting nutrient after carbon, hydrogen and oxygen for photosynthetic process, phyto-hormonal, proteomic changes and growth-development of plants to complete its lifecycle. Excessive and inefficient use of N fertilizer results in enhanced crop production costs and atmospheric pollution. Atmospheric nitrogen (71%) in the molecular form is not available for the plants. For world’s sustainable food production and atmospheric benefits, there is an urgent need to up-grade nitrogen use efficiency in agricultural farming system. The nitrogen use efficiency is the product of nitrogen uptake efficiency and nitrogen utilization efficiency, it varies from 30.2 to 53.2%. Nitrogen losses are too high, due to excess amount, low plant population, poor application methods etc., which can go up to 70% of total available nitrogen. These losses can be minimized up to 15–30% by adopting improved agronomic approaches such as optimal dosage of nitrogen, application of N by using canopy sensors, maintaining plant population, drip fertigation and legume based intercropping. A few transgenic studies have shown improvement in nitrogen uptake and even increase in biomass. Nitrate reductase, nitrite reductase, glutamine synthetase, glutamine oxoglutarate aminotransferase and asparagine synthetase enzyme have a great role in nitrogen metabolism. However, further studies on carbon–nitrogen metabolism and molecular changes at omic levels are required by using “whole genome sequencing technology” to improve nitrogen use efficiency. This review focus on nitrogen use efficiency that is the major concern of modern days to save economic resources without sacrificing farm yield as well as safety of global environment, i.e. greenhouse gas emissions, ammonium volatilization and nitrate leaching.
机译:氮是碳,氢气和氧气的主要限制性营养,用于光合作用,植物激素,蛋白质组学的变化和植物生长发育,以完成其生命周期。对氮肥的过度和低效使用导致作物生产成本和大气污染提高。分子形式的大气氮(71%)不适用于植物。对于世界可持续的粮食生产和大气利益,迫切需要在农业农业系统中达到额度的氮气利用效率。氮利用效率是氮素吸收效率和氮利用效率的产物,其变化从30.2〜53.2%。由于量过剩,低植物种群,缺乏施法方法等,氮气损失太高,可达到总可用氮总量的70%。通过采用改进的农艺方法,这些损失可以最大限度地减少高达15-30%,例如通过使用冠层传感器,维持植物群,滴灌基于植物的间作,施用n如氮的最佳剂量。少数转基因研究表明氮气摄取的改善甚至增加生物质。硝酸盐还原酶,亚硝酸盐还原酶,谷氨酰胺合成酶,谷氨酰胺氧化丁酸氨基转移酶和天冬酰胺合成酶在氮代谢中具有很大的作用。然而,通过使用“全基因组测序技术”来提高氮气利用效率,需要进一步研究碳氮代谢和OMIC水平的分子变化。本综述重点是氮气利用效率,即现代日的主要问题,以挽救经济资源而不牺牲农场产量以及全球环境的安全性,即温室气体排放,挥发和硝酸盐浸出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号