首页> 外文学位 >Quantitative investigation of bacterial chemotaxis at the single-cell level.
【24h】

Quantitative investigation of bacterial chemotaxis at the single-cell level.

机译:在单细胞水平上对细菌趋化性进行定量研究。

获取原文
获取原文并翻译 | 示例

摘要

Living cells sense and respond to constantly changing environmental conditions. Depending on the type of stimuli, the cell may response by altering gene expression pattern, secreting molecules, or migrating to a different environment. Directed movement of cells in response to chemical stimuli is called chemotaxis.;In bacterial chemotaxis, small extracellular molecules bind receptor proteins embedded in the cell membrane, which then transmit the signal inside the cell through a cascade of protein-protein interactions. This chain of events influences the behavior of motor proteins that drive the rotation of helical filaments called flagella. Individual cells of the gut-dwelling bacteria Escherichia coli (E. coli) have many such flagella, whose collective action results in the swimming behavior of the cell. A recent study found that in absence of chemical stimuli, fluctuations in the protein cascade can cause non-Poissonian switching behavior in the flagellar motor (2). A corollary was that extension of such behavior to the whole-cell swimming level would have implications for E. coli's foraging strategy. However, existence of such behavior at the swimming cell level could not be predicted a priori, since the mapping from single flagellum behavior to the swimming behavior of a multi-flagellated cell is complex and poorly understood (3, 4).;Here we characterize the chemotactic behavior of swimming E. coli cells using a novel optical trap-based measurement technique. This technique allows us to trap individual cells and monitor their swimming behavior over long time periods with high temporal resolution. We find that swimming cells exhibit non-Poissonian switching statistics between different swimming states, in a manner similar to the rotational direction-switching behavior seen in individual flagella. Furthermore, we develop a data analysis routine that allows us to characterize higher order swimming features such as reversal of swimming direction and existence of multiple swimming speeds.;When stimulated with a step-increase in chemo-attractants, E. coli cells initially respond by reducing the frequency of swimming direction change. Over time, however, cells return to their pre-stimulus behavior despite the increased chemo-attractant concentration in the environment. This process is called chemotactic adaptation. Adaptation allows cells to maintain chemotactic sensitivity over a wide range of background chemical concentrations.;We study chemotactic adaptation of E. coli at the individual cell level using our optical trapping method. Chemical stimuli were delivered from the chemical gradient established in a custom-made laminar flow device. We observe two striking features of individual cell's adaptation and their dependence on stimulus strength. We also observe asymmetry between responses to positive and negative stimuli. Existing evidence and theoretical models suggest that the observed features of single-cell adaptation and their dependence on stimulus strength may be explained in terms of interactions of neighboring receptor proteins in large clusters. Further experiments using various mutant strains of E. coli would shed light on the molecular-level mechanisms of the observed behavior.
机译:活细胞感知并响应不断变化的环境条件。根据刺激的类型,细胞可以通过改变基因表达方式,分泌分子或迁移到不同的环境来做出反应。细胞对化学刺激的定向运动称为趋化性;在细菌趋化性中,小的细胞外分子结合嵌入细胞膜中的受体蛋白,然后通过级联的蛋白-蛋白相互作用在细胞内传递信号。这一系列事件影响运动蛋白的行为,这些蛋白驱动称为鞭毛的螺旋细丝的旋转。肠内细菌大肠埃希氏菌(E. coli)的单个细胞有许多这样的鞭毛,其鞭毛作用导致细胞的游动行为。最近的一项研究发现,在没有化学刺激的情况下,蛋白质级联的波动会导致鞭毛运动中的非泊松转换行为(2)。一个推论是,将这种行为扩展到全细胞游泳水平将对大肠杆菌的觅食策略产生影响。然而,由于从单鞭毛行为到多鞭毛细胞的游泳行为的映射是复杂且了解得很少的,因此无法先验地预测这种行为在游泳细胞水平上的存在(3,4)。使用一种新型的基于光阱的测量技术来研究游泳大肠杆菌细胞的趋化行为。该技术使我们能够捕获单个细胞并以高时间分辨率长时间监视它们的游泳行为。我们发现游泳细胞表现出不同游泳状态之间的非泊松转换统计,其方式类似于在各个鞭毛中观察到的旋转方向转换行为。此外,我们开发了一种数据分析程序,使我们能够表征更高阶的游泳功能,例如游泳方向的反转和多种游泳速度的存在。当化学引诱剂逐步增加刺激时,大肠杆菌细胞最初会通过减少游泳方向改变的频率。然而,随着时间的流逝,尽管环境中化学吸引剂浓度增加,细胞仍会恢复其刺激前的行为。该过程称为趋化适应。适应使细胞可以在很宽的背景化学浓度范围内保持趋化敏感性。;我们使用光阱法研究了大肠杆菌在单个细胞水平上的趋化适应性。化学刺激从在定制的层流设备中建立的化学梯度传递。我们观察到单个细胞适应性的两个显着特征以及它们对刺激强度的依赖性。我们还观察到对正面和负面刺激的反应之间的不对称性。现有证据和理论模型表明,观察到的单细胞适应特征及其对刺激强度的依赖性可以用大簇中相邻受体蛋白的相互作用来解释。使用各种大肠杆菌突变株的进一步实验将阐明观察到的行为的分子水平机制。

著录项

  • 作者

    Min, Taejin.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Physics General.;Biophysics General.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号