首页> 外文学位 >Sub-diffusive dynamics of protein folding and protein folding under confinement.
【24h】

Sub-diffusive dynamics of protein folding and protein folding under confinement.

机译:封闭条件下蛋白质折叠和蛋白质折叠的亚扩散动力学。

获取原文
获取原文并翻译 | 示例

摘要

Conformational dynamics is of fundamental importance for the folding and the function of proteins. Structural changes occur over a wide range of time scales, and folding itself is the slowest, long-time process, Rates vary with the extent of folding, as measured by an order parameter, Q.;The dynamics of the order parameter is studied in detail using a coarse-grained model of the protein and classical molecular dynamics simulations. A description of folding is attempted in terms of the Smoluchowski equation (SE), based on a picture of diffusion of the order parameter under the influence of a thermodynamic force. A new method is developed to obtain the order parameter dependent diffusion coefficient, D(Q), from short-time simulations. D(Q) is shown to change significantly as the protein folds. It is found that folding obeys neither the one-dimensional SE nor a normal-diffusion continuous time random walk (CTRW), because the order parameter follows sub-diffusion. The anomalous nature of the order parameter dynamics is incorporated into the ordinary SE based on the idea that the folding pathways have fractal character. Obtaining the free energy from the statistical temperature molecular dynamics (STMD) enhanced sampling algorithm and D(Q) from short-time simulations, mean first passage times of folding (MFPT) calculated from our fractal SE theory are in quantitative agreement with simulated long-time folding dynamics.;Protein folding occurs in a crowded and heterogeneous environment inside the cell. Interactions of the protein with other cellular biomolecules may hamper the folding process. Chaperones are known to help a large fraction of newly synthesized proteins in their proper folding. To understand the mechanism of chaperonin-mediated protein folding, the thermodynamics and kinetics of a frustrated model protein are studied inside a chaperonin cavity modeled as a sphere of tunable hydrophobicity. Using the inherent structure (IS) approach, we found that folding is preferred over misfolding inside a slightly hydrophobic chaperonin cavity. The occupation probabilities of the misfolded states are entropically suppressed due to smaller associated configurational volumes.
机译:构象动力学对于蛋白质的折叠和功能至关重要。结构变化发生在很宽的时间范围内,折叠本身是最慢的长时间过程,速率随着折叠程度的变化而变化,这是通过阶数参数Q来衡量的。使用蛋白质的粗粒度模型和经典的分子动力学模拟进行详细分析。基于热力学力影响下阶跃参数的扩散图,尝试根据Smoluchowski方程(SE)进行折叠描述。开发了一种新的方法,可以从短时仿真中获得依赖于阶数参数的扩散系数D(Q)。 D(Q)随着蛋白质折叠而显示出显着变化。发现折叠不服从一维SE或服从正常扩散连续时间随机游走(CTRW),因为顺序参数遵循子扩散。基于折叠路径具有分形特征的思想,将顺序参数动力学的异常性质合并到普通SE中。从统计温度分子动力学(STMD)增强采样算法中获得自由能,从短时模拟中获得D(Q),根据我们的分形SE理论计算出的平均首次折叠时间(MFPT)与模拟的长距离定量一致蛋白质折叠发生在细胞内部拥挤且异质的环境中。蛋白质与其他细胞生物分子的相互作用可能会阻碍折叠过程。已知伴侣蛋白可帮助大部分新合成的蛋白正确折叠。为了了解伴侣蛋白介导的蛋白质折叠的机理,研究了在伴侣蛋白腔内建模为可调疏水性球体的沮丧模型蛋白的热力学和动力学。使用固有结构(IS)方法,我们发现折叠比在疏水性伴侣蛋白腔内的错误折叠更可取。由于较小的相关构型体积,熵折叠抑制了错折叠状态的占据概率。

著录项

  • 作者

    Sangha, Amandeep Kaur.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Chemistry Physical.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号