首页> 外文学位 >Calculating Infrared Spectra of Proteins and Other Organic Molecules Based on Normal Modes.
【24h】

Calculating Infrared Spectra of Proteins and Other Organic Molecules Based on Normal Modes.

机译:基于正常模式计算蛋白质和其他有机分子的红外光谱。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this theoretical study of infrared spectra was to ascertain to what degree molecules may be identified from their IR spectra and which spectral regions are best suited for this purpose. The frequencies considered range from the lowest frequency molecular vibrations in the far-IR, terahertz region (below ∼ 3 THz or 100 cm-1) up to the highest frequency vibrations ( ≲ 120 THz or 4000 cm-1). An emphasis was placed on the IR spectra of chemical and biological threat molecules in the interest of detection and prevention. To calculate IR spectra, the technique of normal mode analysis was applied to organic molecules ranging in size from 8 to 11,352 atoms. The IR intensities of the vibrational modes were calculated in terms of the derivative of the molecular dipole moment with respect to each normal coordinate. Three sets of molecules were studied: the organophosphorus G- and V-type nerve agents and chemically related simulants (15 molecules ranging in size from 11 to 40 atoms); 21 other small molecules ranging in size from 8 to 24 atoms; and 13 proteins ranging in size from 304 to 11,352 atoms. Spectra for the first two sets of molecules were calculated using quantum chemistry software, the last two sets using force fields. The "middle" set used both methods, allowing for comparison between them and with experimental spectra from the NIST/EPA Gas-Phase Infrared Library. The calculated spectra of proteins, for which only force field calculations are practical, reproduced the experimentally observed amide I and II bands, but they were shifted by ≈ +40 cm -1 relative to experiment. Considering the entire spectrum of protein vibrations, the most promising frequency range for differentiating between proteins was ∼ 600--1300 cm-1 where water has low absorption and the proteins show some differences.
机译:红外光谱理论研究的目的是确定可以从其红外光谱中识别分子的程度以及最适合此目的的光谱区域。所考虑的频率范围从远红外太赫兹区域的最低频率分子振动(低于3 THz或100 cm-1)到最高频率振动(≲ 120 THz或4000 cm-1)。为了检测和预防,重点放在化学和生物威胁分子的红外光谱上。为了计算红外光谱,将正常模式分析技术应用于大小为8到11352个原子的有机分子。根据分子偶极矩相对于每个法线坐标的导数来计算振动模式的IR强度。研究了三组分子:有机磷G型和V型神经毒剂以及化学相关的模拟物(15个分子,大小从11到40个原子不等);以及其他21个小分子,大小从8到24个原子不等; 13种蛋白质,大小从304到11,352个原子不等。前两组分子的光谱使用量子化学软件计算,后两组分子使用力场计算。 “中间”设置使用了这两种方法,从而可以将它们与NIST / EPA气相红外库中的实验光谱进行比较。只能通过力场计算才能计算出的蛋白质光谱,再现了实验观察到的酰胺I和II谱带,但它们移动了≈。相对于实验为+40 cm -1。考虑到蛋白质振动的整个频谱,区分蛋白质的最有希望的频率范围是〜600--1300 cm-1,其中水吸收率低,蛋白质表现出一些差异。

著录项

  • 作者

    Mott, Adam J.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号