首页> 外文学位 >Neural cartography: Computer assisted Poincare return mappings for biological oscillations.
【24h】

Neural cartography: Computer assisted Poincare return mappings for biological oscillations.

机译:神经制图:用于生物振荡的计算机辅助Poincare返回映射。

获取原文
获取原文并翻译 | 示例

摘要

Neurons have a multitude of distinct oscillatory behaviors because of previous conditions, intrinsic cellular properties, and network connections. The qualitative theory of differential equations offers tools that can be used to describe solutions for the differential equations that model neurons. The primary tool for investigation of global stability is the Poincare return map. The maps capitalize on the recurrent nature of oscillations and are able to analyze changes in dynamics even at bifurcation points where most other methods fail.;Elliptic bursting models are found in numerous biological systems, including the external Globus Pallidus section of the brain; the focus for studies of epileptic seizures and Parkinson's disease. However the bifurcation structure for changes in dynamics remains incomplete. This dissertation develops computer assisted Poincar maps for mathematical and biologically relevant elliptic bursting neuron models and central pattern generators, CPG's. The method employed for individual neurons offers the advantage of an entire family of computationally smooth and complete mappings which can explain all dynamical transitions of the system. A complete bifurcation analysis was performed detailing the mechanisms for the transitions from tonic spiking to quiescence in elliptic bursters. A previously unknown unstable torus bifurcation was found to give rise to small amplitude oscillations.;The focus shifts from individual neuron models to small networks of neuron models, in particular 3-cell CPG's. A CPG is a small network which is able to produce a specific phasic relationships between the individual cells. The output rhythms may represent a number of biologically observable actions, such as walking or running gaits. A 2-dimensional map is derived from the phase-lags of the CPG. The cells are endogenously bursting neuron models mutually coupled using the fast threshold synaptic paradigm. Internal parameters, which change the burst duration of the individual cells , as well as type and strength of synaptic coupling; inhibitory and excitatory. The mappings generate clear explanations for rhythmic outcomes as well as basins of attraction for specific rhythms and possible mechanisms for switching between rhythms. A complete description of bifurcations and rhythmic patterns for a 3-cell network is given.;INDEX WORDS: Central pattern generator, Bifurcation, Return mappings, Polyrhythmic, Bursting, Duty cycle, Elliptic bursting, Motifs, Inhibitory, Multistability, Poincare map, Interneuron, Phaselag, Network, Synaptic, Fast threshold modulation, Saddlenode, Multifunctional.
机译:由于先前的条件,内在的细胞特性和网络连接,神经元具有多种不同的振荡行为。微分方程的定性理论提供了可用于描述对神经元建模的微分方程解的工具。调查全球稳定性的主要工具是庞加莱收益图。这些图利用了振荡的循环性质,即使在大多数其他方法都失效的分叉点上,也能够分析动力学变化。椭圆爆裂模型存在于许多生物系统中,包括大脑的外部Globus Pallidus区域;癫痫发作和帕金森氏病研究的重点。但是,动力学变化的分叉结构仍然不完整。本文开发了数学和生物学相关的椭圆爆裂神经元模型和中央模式发生器CPG的计算机辅助Poincar映射。用于单个神经元的方法提供了整个计算平滑和完整映射家族的优势,可以解释系统的所有动态转换。进行了完整的分叉分析,详细说明了椭圆形爆发者中从强直尖峰过渡到静止的机制。发现以前未知的不稳定圆环分叉会引起小振幅振荡。焦点从单个神经元模型转移到神经元模型的小型网络,尤其是3细胞CPG。 CPG是一个小型网络,能够在各个单元之间产生特定的相位关系。输出节律可以代表许多生物学上可观察到的动作,例如步行或跑步步态。从CPG的相位滞后得出二维图。细胞是使用快速阈值突触范例相互耦合的内源性爆发神经元模型。内部参数,改变单个细胞的爆发持续时间,以及突触耦合的类型和强度;抑制性和兴奋性。这些映射为节奏结局以及特定节奏的吸引域和节奏之间的可能转换机制提供了清晰的解释。给出了3单元网络的分叉和节律模式的完整描述。;索引词:中央模式发生器,分叉,返回映射,多韵律,破裂,占空比,椭圆爆裂,基序,抑制性,多重稳定性,庞加莱图,中间神经元,Phaselag,网络,突触,快速阈值调制,Saddlenode,多功能。

著录项

  • 作者

    Wojcik, Jeremy.;

  • 作者单位

    Georgia State University.;

  • 授予单位 Georgia State University.;
  • 学科 Mathematics.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号