首页> 外文学位 >Interaction of Silica Nanoparticles with Human Cells and Their Biomedical Applications.
【24h】

Interaction of Silica Nanoparticles with Human Cells and Their Biomedical Applications.

机译:二氧化硅纳米粒子与人类细胞的相互作用及其生物医学应用。

获取原文
获取原文并翻译 | 示例

摘要

With recent development of nanotechnology, various nanoparticulate systems have been proposed to serve as functional units for biomedical applications in many innovative ways. Among various possible choices, silica nanoparticles (NPs) enjoys easily modifiable surface chemical characteristics and excellent stability in physiological environment. Therefore, it is considered as one of the most promising carrier candidate for therapeutic and diagnostic applications.;A systematic study on the interaction between silica nanoparticles and human cells is first carried out in the present thesis work. Endocytosis and exocytosis are identified as major pathways for NPs entering, and exiting the cells, respectively. Most of the NPs are found to be enclosed in membrane bounded organelles, which are fairly stable (against rupture) as very few NPs are released into the cytoplasma. The nanoparticle-cell interaction is a dynamic process, and the amount of NPs inside the cells is affected by both the amount and morphology (degree of aggregation) of NPs in the medium. These interaction characteristics determine the low cytotoxicity of SiO2 NPs at low feeding concentration.;Experiments were then designed to compare the biological consequence of two most common form of SiO2 nanoparticles, i.e., crystalline and amorphous NPs, when they were introduced to human cells. Although the apparent cytotoxicity of both types of NPs seems to be low, more detailed characterizations disclose the profound difference induced by the crystalline and amorphous ones, resulting in significantly different cell evolution pathways. Crystalline NPs but not amorphous ones are found to drastically increase the recative oxygen species (ROS) level in the cells, which can cause mitochondria dysfunction (being expressed as mitochondria proliferation), and eventually direct the cell into apoptosis. Nonetheless, only p53 deficient cells are subjective to such ROS induced cell damage, while p53 proficient cells can accommodate the stimulation from crystalline SiO2 NPs. The amorphous SiO2 NPs are found to be benign in the biological systems, and have great potential to be developed as nanomedicine.;Base on the understanding obtained from the toxicology study of the SiO 2 NPs, we have designed a special nanocarrier system for drug delivery. We have combined advantages of both SiO2 and Au NPs by constructing Au-core/SiO2-shell (Au@SiO2) nanocarriers with the photosensitizer (PS) drug embedded in the SiO2 shell layer. Compared with free PS, PS loading in the Au@SiO2 NPs shows an enhanced drug efficacy. In particular, the cells treated with the NP drug take necrosis as a major death path instead of apoptosis, which is a much less effective route. The Au plasmonic effect is found to promote the photo-response of the PS drug under light irradiation, contributing to the largely decreased cell viability. Nevertheless, one shall note that spatial confinement of the drug moledules to the close proximity of the Au core and an energy match between the drug absorption and the Au surface plasmon resonance are critical in manifesting the plasmonic effect. At the same time, embedding the drug in the SiO 2 matrix leads to favorable change in the photochemical process. The combined effects brought by the Au@ SiO2 NP carrier is responsible for the high drug efficacy. These mechanisms can be generally valid in engineering drug molecule incorporation into NP carriers and also give guidance for the optimum design of the NP drug carrier.
机译:随着纳米技术的最新发展,已经提出了各种纳米颗粒系统以许多创新方式用作生物医学应用的功能单元。在各种可能的选择中,二氧化硅纳米颗粒(NPs)具有易于修饰的表面化学特性和在生理环境中的出色稳定性。因此,它被认为是治疗和诊断应用中最有希望的载体候选者之一。本研究工作首先对二氧化硅纳米粒子与人细胞之间的相互作用进行了系统的研究。胞吞作用和胞吐作用被确定为NP分别进入和离开细胞的主要途径。发现大多数NP被包裹在膜结合的细胞器中,由于很少的NP被释放到细胞质中,膜细胞器相当稳定(抗破裂)。纳米粒子与细胞的相互作用是一个动态过程,细胞内NP的数量受培养基中NP的数量和形态(聚集度)的影响。这些相互作用特性决定了在低进料浓度下SiO2 NPs的低细胞毒性。然后设计实验以比较两种最常见形式的SiO2纳米颗粒,即结晶和无定形NPs引入人体细胞时的生物学结果。尽管两种类型的NPs的表观细胞毒性似乎都较低,但更详细的描述揭示了由结晶和无定形的NP引起的巨大差异,从而导致了明显不同的细胞进化途径。发现结晶的NP而非非晶的NP会极大地增加细胞中的阳性氧(ROS)水平,这可能导致线粒体功能障碍(表示为线粒体增殖),并最终指导细胞凋亡。尽管如此,只有p53缺陷的细胞才受ROS诱导的细胞损伤,而p53熟练的细胞可以适应SiO2 NP晶体的刺激。非晶态SiO2 NPs在生物系统中被认为是良性的,并具有作为纳米药物开发的巨大潜力。;基于对SiO 2 NPs的毒理学研究的认识,我们设计了一种特殊的纳米载体系统用于药物输送。我们通过用嵌入在SiO2壳层中的光敏剂(PS)药物构建Au-核/ SiO2-壳(Au @ SiO2)纳米载体,从而结合了SiO2和Au NP的优点。与游离PS相比,Au @ SiO2 NP中的PS负载显示出增强的药物功效。特别地,用NP药物处理的细胞将坏死作为主要的死亡途径而不是凋亡,这是行之有效的途径。发现Au等离子体激元效应促进光照射下PS药物的光响应,从而导致细胞活力大大降低。然而,应注意的是,药物分子的空间限制在Au核的紧密附近以及药物吸收和Au表面等离振子共振之间的能量匹配对于体现等离激元效应至关重要。同时,将药物包埋在SiO 2基体中会导致光化学过程发生有利变化。 Au @ SiO2 NP载体带来的综合效应是高药效的原因。这些机制通常在将工程药物分子掺入NP载体中时是有效的,并为NP药物载体的最佳设计提供指导。

著录项

  • 作者

    Chu, Zhiqin.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Biology Cell.;Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号