首页> 外文学位 >Fuel-flexible combustion control of modern compression-ignition and spark-ignition engines.
【24h】

Fuel-flexible combustion control of modern compression-ignition and spark-ignition engines.

机译:现代压燃和火花点火发动机的灵活燃料燃烧控制。

获取原文
获取原文并翻译 | 示例

摘要

Concern over the availability of fossil fuels as well as energy usage and harmful emissions output have produced an interest in alternative fuels, advanced combustion strategies, and increased usage of engine technologies such as variable valve timing (VVT), turbocharging, and exhaust gas recirculation. While alternatives such as biodiesel and ethanol are renewable and can reduce dependence on foreign sources of petroleum, challenges in using these fuels must be addressed in order for optimal performance to be achieved on fuel-flexible vehicles.;On compression ignition (CI) engines, biodiesel combustion typically results in decreased particulate matter (PM), unburned hydrocarbon (uHC), and carbon moNOxide (CO) emissions. However, biodiesel usage also results in increased fuel consumption and nitrogen oxide (NOx) emissions relative to petroleum-based diesel. These challenges can be addressed through the use of a fuel-flexible combustion control strategy. The approach presented in this work consists of two parts: 1) estimation, whereby the engine control module (ECM) detects the biodiesel blend fraction being supplied, and 2) accommodation, whereby the ECM dynamically changes the control setpoints in order to improve engine performance. A closed loop control method, which accounts for the oxygen content and energy density differences between diesel and biodiesel, has been developed which can be added to the existing ECM control structure to create a fuel-flexible structure. Analysis of the control system indicates that the addition of this fuel-flexible control strategy will not detrimentally affect the overall engine control structure. Experimental validation of this control strategy on a 2007 6.7 liter Cummins ISB series engine at several very different operating modes shows that this fuel-flexible control method greatly reduced or completely eliminated increases in NOx emissions of up to 30% while largely maintaining the torque/power capacity of a modern diesel engine when operating with biodiesel. Since biodiesel can be created from a variety of different feedstock and can be further processed to alter certain fuel properties, its fatty acid structure can differ. The robustness of the proposed control technique to variations in fatty acid composition is also explored.;Fuel-flexible spark ignition (SI) engines permit the increased use of ethanol-gasoline blends. Ethanol is a renewable fuel which has the added advantage of improving performance in operating regions which are typically knock limited due to the higher octane rating of the fuel. Furthermore, many modern SI engines are also being equipped with variable valve timing, a technology which can increase engine efficiency by reducing pumping losses through control of the in-cylinder burned gas fraction (BGF). However, the BGF and ethanol blend can have a significant impact on the combustion timing, such that capturing these effects is essential if the combustion phasing is to be properly controlled. Combustion efficiency is typically tied to an optimal CA50 (crankangle when 50% of fuel is burned) for an engine. A control-oriented model of combustion phasing has been developed and extensively validated across the operating range of a 4-cylinder Renault SI engine for 4 blends of gasoline and ethanol. Furthermore, the model was utilized to determine the impact of ethanol blend and BGF on combustion phasing and on the optimal spark timing. Leveraging the model in this manner provides direct evidence that accounting for the impact of these two inputs is critical for proper spark ignition timing control. The model created in this work has the potential to be used to improve air handling control to avoid the need for throttling and to improve spark timing control to ensure that CA50 occurs at its optimal timing despite changes in fuel and BGF.;While fuel-flexible operation in conventional combustion modes presents significant challenges, an interest in abiding by stringent emissions and fuel economy regulations has motivated the investigation of advanced combustion strategies such as premixed charge compression ignition (PCCI) used in conjunction with alternative fuels. PCCI can achieve low emissions and high efficiencies in diesel engines; however, fuel property differences cause a more significant impact in such advanced combustion modes and can make control in these regions more challenging. When biodiesel is used at premixed operating conditions with the engine operating with the stock calibration for diesel fuel, the timing of start of combustion and peak heat release can shift by over 2°CA and 4°CA respectively, nitrogen oxide emissions can increase by over 100%, and torque output can drop by over 30% with respect to engine performance with diesel. A control framework for fuel-flexible PCCI has been developed and theoretical and experimental results demonstrate that: 1) combustion timing control and NOx control can also be achieved through control of in-cylinder oxygen fraction alone, 2) energy-based fueling provides consistent in-cylinder oxygen fractions between diesel and biodiesel while also matching torque outputs for the two fuels when considered at the same premixed operating point (speed, intake manifold temperature, charge flow, effective compression ratio, and combustion timing).
机译:对化石燃料的可用性以及能源使用和有害排放量的关注引起了人们对代用燃料,先进的燃烧策略以及发动机技术(例如可变气门正时(VVT),涡轮增压和废气再循环)的更多使用的兴趣。虽然生物柴油和乙醇等替代品是可再生的,并且可以减少对国外石油的依赖,但必须解决使用这些燃料的挑战,以便在柔性燃料汽车上实现最佳性能。在压燃(CI)发动机上,生物柴油燃烧通常会减少颗粒物(PM),未燃烧的碳氢化合物(uHC)和碳一氧化碳(italic) x ide(CO)的排放。但是,相对于石油基柴油,生物柴油的使用还导致燃料消耗增加和氮氧化物(NO x )排放量增加。这些挑战可以通过使用燃料灵活的燃烧控制策略来解决。本工作中介绍的方法包括两个部分:1)估算,发动机控制模块(ECM)检测所供应的生物柴油混合比例,以及2)调节,ECM动态更改控制设定点以改善发动机性能。已经开发出一种闭环控制方法,该方法考虑了柴油和生物柴油之间的氧气含量和能量密度差异,可以将其添加到现有的ECM控制结构中以创建一种燃料灵活的结构。对控制系统的分析表明,添加这种灵活燃料控制策略不会对整个发动机控制结构产生不利影响。对这种控制策略在2007年的6.7升康明斯ISB系列发动机上的几种非常不同的运行模式进行的实验验证表明,这种灵活的燃料控制方法大大减少或完全消除了NO x 的增加。斜体排放高达30%,同时在使用生物柴油运行时在很大程度上保持了现代柴油机的扭矩/功率容量。由于生物柴油可以由多种不同的原料制成,并且可以进一步加工以改变某些燃料的性质,因此其脂肪酸结构可能会有所不同。还探索了所提出的控制技术对脂肪酸组成变化的鲁棒性。燃料-柔性火花点火(SI)发动机允许更多地使用乙醇-汽油混合物。乙醇是一种可再生燃料,具有在工作区域提高性能的附加优势,这些工作区域由于燃料的辛烷值较高而通常受到爆震限制。此外,许多现代SI发动机还配备了可变气门正时,该技术可通过控制缸内燃烧气体分数(BGF)来减少泵送损失,从而提高发动机效率。但是,BGF和乙醇的混合物可能会对燃烧正时产生重大影响,因此,如果要正确控制燃烧阶段,则必须捕捉这些影响。燃烧效率通常与发动机的最佳CA50(燃烧50%的燃料时的曲轴角)有关。在四缸雷诺SI发动机的4种汽油和乙醇混合气的工作范围内,已经开发出了一种基于控制的燃烧阶段模型,并得到了广泛的验证。此外,该模型用于确定乙醇混合物和BGF对燃烧定相和最佳火花正时的影响。以这种方式利用模型可以提供直接的证据,说明这两个输入的影响对于正确的火花点火正时控制至关重要。在这项工作中创建的模型有潜力用于改进空气处理控制以避免节流的需要,并改善火花正时控制以确保尽管燃料和BGF发生变化,CA50仍以最佳时机出现。传统燃烧模式下的燃烧操作面临着巨大的挑战,人们对遵守严格的排放法规和燃油经济性法规的兴趣促使人们研究先进的燃烧策略,例如与替代燃料一起使用的预混合增压压缩点火(PCCI)。 PCCI可以实现柴油发动机的低排放和高效率;然而,燃料特性的差异会对这种先进的燃烧模式产生更大的影响,并使这些地区的控制更具挑战性。当生物柴油在预混合运行条件下使用且发动机以柴油燃料的存量校准运行时,燃烧的开始时间和峰值放热时间可能分别偏移超过2°CA和4°CA,氮氧化物排放量可能增加超过100%,相对于柴油发动机的性能,扭矩输出可能会降低30%以上。建立了燃料柔性PCCI的控制框架,理论和实验结果表明:1)燃烧正时控制和NO x 控制也可以通过控制进气量来实现。仅缸内氧气比例2)基于能量的加油可在柴油和生物柴油之间提供一致的缸内氧气比例,同时在相同的预混合工作点(速度,进气歧管温度,充气流量,有效压缩比和燃烧时间)。

著录项

  • 作者

    Hall, Carrie M.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号