首页> 外文学位 >Simulated and Field Environmental Effects on the Transcriptome and Metabolome of Mussel Mytilus californianus.
【24h】

Simulated and Field Environmental Effects on the Transcriptome and Metabolome of Mussel Mytilus californianus.

机译:模拟环境和田间环境对贻贝加州贻贝转录组和代谢组的影响。

获取原文
获取原文并翻译 | 示例

摘要

Mussels of the genus Mytilus are distributed world-wide and are commercially cultured as a food source for humans. They are also an important ecological species that provide substrate for hundreds of invertebrate and vertebrate organisms as well as an energy source for a variety of marine species. Because of their commercial and ecological importance many studies have been conducted to understand aspects of their physiology. The dominant species on north-western rocky shorelines of North America is Mytilus californianus. As a sessile species M. californianus must endure fluctuations in temperature, salinity, food and oxygen due to the ebb and flood of the tide. During periods of low tide, mussels are exposed to the terrestrial environment where they cannot feed or breathe oxygen and are exposed to temperature fluctuations as a result of solar radiation, cloud cover, wave splash and wind shear. Mussels counteract these stresses by closing their valves to avoid dessication, and switching to anaerobic ATP-producing pathways as well as depressing their metabolism. Thus, M. californianus is well adapted to the highly variable environment of the intertidal zone. Using microarray-based gene expression profiling and metabolite screens, we performed a series of experiments aimed at understanding the fundamental mechanisms driving physiology in an intertidal marine mollusc. Experiments were performed in a custom built aquarium that simulated the intertidal zone, including precision control of tide, solar radiation, day:night cycles, and food levels. In our first experiment, we subjected mussels to balanced cycles of aerial emergence and submergence at constant temperature. Our findings revealed that >40% of the transcriptome exhibited rhythmic gene expression and that depending on the specific tidal conditions 80-90% of the rhythmic transcripts followed a circadian pattern of expression pattern with a period of 24-26 hr, while <2% followed a tidal pattern 10-14hr. Our data indicate that the circadian 24 hr cycle is the dominant driver of rhythmic gene expression in this intertidal inhabitant despite the profound environmental and physiological changes associated with aerial exposure during tidal emergence. Metabolite profiles of the same samples revealed that 24 metabolites oscillated significantly with a 12 hr period that was linked to the tidal cycle. These data confirmed the presence of alternating phases of fermentation and aerobic metabolism and highlight a role for carnitine conjugated metabolites during the anaerobic phase of this cycle. We also observed mussels that spontaneously open and close their valves in constant submerged conditions and a comparison of the expression and metabolite abundances revealed a close similarity in gene expression and utilization of metabolic pathways between subtidal and intertidal physiology as it relates to valve gape state. Lastly, we subjected mussels to an extreme environment that consisted of cycles of long aerial emergence periods combined with a daily heat stress. Surprisingly, the molecular phenotype was notably different from that observed under our more benign conditions, suggesting that M. californianus has a highly flexible physiology that allows it to make acute and complex cellular adjustments that allow it to buffer intense fluctuations in the often unpredictable environment within the intertidal zone. These experiments provide new insights and interpretations of intertidal physiology that can be used as a reference source for comparative studies of rhythmic biology in other organisms.
机译: Mytilus 贻贝分布在世界各地,并作为人类的食物来源进行商业化养殖。它们还是重要的生态物种,可为数百种无脊椎动物和脊椎动物提供底物,并为各种海洋物种提供能源。由于它们的商业和生态重要性,已经进行了许多研究以了解其生理学方面。北美西北多岩石海岸线上的优势种是加州Mytilus californianus 。作为无柄种<斜体> M。由于潮水的潮起潮落,californianus 必须承受温度,盐度,食物和氧气的波动。在退潮期间,贻贝会暴露于陆地环境中,在这些环境中它们无法喂食或呼吸氧气,并且会遭受由于太阳辐射,云层覆盖,波浪飞溅和风切变引起的温度波动。贻贝通过关闭阀门以避免干燥,转换为产生厌氧ATP的途径以及抑制其新陈代谢来抵消这些压力。因此, M。 californianus 非常适合潮间带高度变化的环境。使用基于微阵列的基因表达谱和代谢物筛选,我们进行了一系列旨在了解潮间带海洋软体动物生理机制的基本实验。在定制的水族馆中进行了实验,该水族馆模拟了潮间带,包括潮汐,太阳辐射,昼夜周期和食物水平的精确控制。在我们的第一个实验中,我们使贻贝在恒定温度下经历了空中出没和浸没的平衡循环。我们的发现表明,> 40%的转录组表现出节律性基因表达,并且根据特定的潮汐条件,有80-90%的节奏性转录本遵循昼夜节律的表达模式,周期为24-26 hr,而<2%遵循潮汐模式10-14小时。我们的数据表明,在潮间带居民中,昼夜24小时周期是节奏基因表达的主要驱动力,尽管潮汐出现期间与空气暴露相关的环境和生理发生了深远的变化。相同样品的代谢物谱显示,有24个代谢物在与潮汐周期有关的12小时内发生了明显的振荡。这些数据证实了发酵和有氧代谢交替阶段的存在,并突出了肉碱共轭代谢产物在该循环的厌氧阶段中的作用。我们还观察到贻贝在恒定的淹没条件下自发地打开和关闭其瓣膜,并且对表达量和代谢产物丰度的比较显示,潮膜下和潮间层生理之间的基因表达和代谢途径的利用非常相似,因为它与瓣膜间隙状态有关。最后,我们将贻贝置于极端的环境中,该环境由长时间的空中出没周期和每日的热应激组成。令人惊讶的是,分子表型与在我们更温和的条件下观察到的显着不同,这表明<斜体> M。 californianus 具有高度灵活的生理功能,可以对细胞进行急性和复杂的调节,从而可以缓冲潮间带中通常无法预测的环境中的剧烈波动。这些实验提供了潮间带生理学的新见解和解释,可作为其他生物的节律生物学比较研究的参考资料。

著录项

  • 作者

    Connor, Kwasi M.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号