首页> 外文学位 >V-ATPase expression and function in the brine shrimp, Artemia franciscana: Role of proton gradients in anoxia-induced quiescence.
【24h】

V-ATPase expression and function in the brine shrimp, Artemia franciscana: Role of proton gradients in anoxia-induced quiescence.

机译:V-ATPase在盐水虾中的表达和功能,Franciscana:质子梯度在缺氧诱导的静止中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Upon exposure to anoxia, encysted embryos of the brine shrimp, Artemia franciscana, enter a severely depressed metabolic state, the transition into which is facilitated in part by one of the largest intracellular acidifications ever reported for a eukaryotec organism. However, the endogenous origin of this pH shift remains largely unexplained. We hypothesize that the unexplained acidification is produced by a net flux of protons into the cytoplasm from compartments acidified by a V-type proton pump (V-ATPase) during aerobic development.; Northern blots demonstrate expression of the V-ATPase subunit-B mRNA during early development, while Western blots demonstrate the expression of at least 6 constituent subunits of the V-ATPase in both heavy membranes and microsomal vesicles. Inhibition of embryo hatching with the highly specific V-ATPase inhibitor, bafilomycin A1, confirmed a requirement for V-ATPase activity during the anoxia tolerant stages of development. Given that the V-ATPase is responsible for acidification of intracellular compartments in eukaryotes, these data indicate the presence of compartmentalized proton stores in A. franciscana embryos.; 31P-NMR studies using intact embryos demonstrate that V-ATPase inhibition with bafilomycin severely limits intracellular alkalinization during recovery from anoxia without affecting the restoration of cellular nucleotide triphosphates. Based on these data, it appears that oxidative phosphorylation and ATP resynthesis can only account for the first 0.3 pH unit alkalinization observed during aerobic recovery from 1 h of anoxia. The additional 0.7 pH unit increase requires proton pumping by the V-ATPase. Furthermore, aerobic incubation with the protonophore, carbonyl cyanide 3-chlorophenylhydrazone, produces an intracellular acidification similar to that observed after 1 h of anoxia, and subsequent anoxic exposure yields little additional acidification. When combined with protons generated from net ATP hydrolysis, these data show that the dissipation of proton chemical gradients is sufficient to account for the reversible acidification associated with quiescence in these embryos.; Whole embryo respirometry demonstrates that V-ATPase activity and processes immediately dependent on that activity constitute approximately 31% of the aerobic energy budget of the preemergent embryo. Downregulation of such a costly transporter would be essential in order to attain the level of metabolic depression observed in the whole embryo under anoxia.
机译:暴露于缺氧状态后,盐水虾(法国大虾)的有节制胚胎进入严重抑制的代谢状态,这种转变的部分原因是有报道的真核生物最大的细胞内酸化之一。但是,这种pH改变的内源性原因仍然无法解释。我们假设无法解释的酸化是由质子在有氧发育过程中从由V型质子泵(V-ATPase)酸化的隔室中流入质子的净质子通量产生的。 Northern印迹证实了在早期发育过程中V-ATPase亚基B mRNA的表达,而Western印迹表明了V-ATPase的至少6个组成亚基在重膜和微粒体囊泡中的表达。用高度特异性的V-ATPase抑制剂bafilomycin A1抑制胚胎孵化,证实了在耐缺氧的发育阶段需要V-ATPase活性。考虑到V-ATPase负责真核生物中细胞内区室的酸化,这些数据表明在A. franciscana胚胎中存在分隔的质子存储。使用完整胚胎进行的31P-NMR研究表明,用bafilomycin抑制V-ATPase严重限制了从缺氧状态恢复过程中的细胞内碱化作用,而不影响细胞三磷酸核苷酸的恢复。基于这些数据,似乎氧化磷酸化和ATP再合成只能解释从缺氧1小时的好氧恢复过程中观察到的第一个0.3 pH单位碱化。额外增加0.7 pH单位需要通过V-ATPase抽出质子。此外,与质子载体羰基氰化物3-氯苯基hydr的需氧孵育产生的细胞内酸化类似于在缺氧1小时后观察到的酸化,随后的缺氧暴露几乎不会产生额外的酸化。当与由净ATP水解产生的质子结合时,这些数据表明质子化学梯度的耗散足以说明这些胚胎中与静止相关的可逆酸化。整个胚胎呼吸测定法表明,V-ATPase活性和直接依赖于该活性的过程构成了芽前胚胎有氧能量收支的约31%。为了达到在缺氧下在整个胚胎中观察到的代谢抑制水平,必须降低这种昂贵的转运蛋白的水平。

著录项

  • 作者

    Covi, Joseph Antonio.;

  • 作者单位

    Louisiana State University and Agricultural & Mechanical College.;

  • 授予单位 Louisiana State University and Agricultural & Mechanical College.;
  • 学科 Biology Animal Physiology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号