首页> 外文学位 >Mathematical simulation of propagated electrical excitation in the human ventricular myocardium.
【24h】

Mathematical simulation of propagated electrical excitation in the human ventricular myocardium.

机译:在人心室心肌中传播的电激发的数学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Mathematical models for simulating the electrical propagation phenomena in the heart can provide valuable insight into the normal and pathological process of cardiac depolarization and repolarization. Using a model based on anisotropic bidomain theory and a physiologically accurate transmembrane ionic current term, we investigated action-potential propagation in one-, two-, and three-dimensional domains representing the ventricular myocardium. The model of the current flow in cardiac tissue consisted of two coupled partial differential equations for the bidomain case, or a single partial differential equation for the reduced monodomain case. Additionally coupled to this was a system of nonlinear ordinary differential equations that determine the time-varying ionic current at each point in the domain. The total ionic current was described by a realistic membrane model that employs Hodgkin-Huxley formalism to reconstruct the cardiac action potential. A novel approach for the numerical solution of these equations was developed based on the method of lines: the partial differential equations were discretized in space and the resultant differential-algebraic equations were then solved using the robust numerical software package DASPK.; In a three-dimensional bidomain block of human ventricular myocardium, we investigated the propagation of excitation under assumption of equal and unequal anisotropy ratio---to answer the question of whether the former adequately describes physiological characteristics of ventricular myocardium. The simulations demonstrated the sensitivity of the spread of activation and potential time courses and distributions to the underlying electrical properties of cardiac tissue.; We explored the basis for electrocardiographic waveforms using a bidomain model incorporating transmural electrical heterogeneity. The simulations demonstrated that a T wave with the same polarity as the QRS complex can be generated by a model of cardiac tissue that includes the three cell types: endocardial, M cell, and epicardial. Of key importance in generating a "correct" T wave was the presence of a transmural dispersion of repolarization. Furthermore, it was observed that a J wave is produced by the heterogeneous distribution of the transient outward current, Ito, across the ventricular wall.; The model has been shown to be a useful representation of human ventricular myocardium for experimental data of activation under normal conditions. A uniqueness of this model is its ability to simulate---by virtue of having physiologically accurate description of transmembrane ionic currents---the effect of therapeutic drugs.
机译:用于模拟心脏中电传播现象的数学模型可以为深入了解心脏去极化和复极化的正常过程和病理过程提供有价值的见解。使用基于各向异性双域理论和生理学上准确的跨膜离子电流术语的模型,我们研究了代表心室心肌的一维,二维和三维域中的动作电位传播。心脏组织中电流的模型由用于双域情况的两个耦合的偏微分方程或用于简化单域情况的单个偏微分方程组成。与此相关的还有一个非线性常微分方程组,该方程组确定域中每个点的时变离子电流。总离子电流由采用Hodgkin-Huxley形式主义重建心脏动作电位的逼真的膜模型描述。在直线法的基础上,提出了一种求解这些方程数值解的新方法:将偏微分方程在空间上离散化,然后使用健壮的数值软件包DASPK求解所得的微分代数方程。在人心室心肌的三维双域块中,我们研究了在各向异性比相等和不相等的情况下激发的传播-来回答前者是否充分描述了心室心肌的生理特性的问题。模拟表明了激活扩散和潜在的时程以及分布对心脏组织潜在的电学特性的敏感性。我们使用结合跨壁电异质性的双域模型探索了心电图波形的基础。模拟表明,可以通过包括以下三种细胞类型的心脏组织模型来生成与QRS复合波极性相同的T波:心内膜,M细胞和心外膜。产生“正确” T波的关键是复极化的透壁分散。此外,已经观察到,通过心室壁上的瞬态向外电流Ito的不均匀分布会产生J波。该模型已经显示出对于正常条件下激活的实验数据而言,是人心室心肌的有用代表。该模型的独特之处在于其具有模拟能力-由于具有生理学上对跨膜离子电流的准确描述-具有治疗药物的作用。

著录项

  • 作者

    Clements, Clyde Jeffory.;

  • 作者单位

    Dalhousie University (Canada).;

  • 授予单位 Dalhousie University (Canada).;
  • 学科 Biophysics Medical.; Biophysics General.; Biology Animal Physiology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;生物物理学;生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号