首页> 外文学位 >Theoretical and numerical investigations of the effects of pore fluid on the dynamic behavior of saturated soils.
【24h】

Theoretical and numerical investigations of the effects of pore fluid on the dynamic behavior of saturated soils.

机译:孔隙流体对饱和土动力特性影响的理论和数值研究。

获取原文
获取原文并翻译 | 示例

摘要

The primary objective of the research was to investigate the effects of pore fluid on the dynamic behavior of fully saturated soils. Saturated soil is modeled as a two-phase system consisting of a solid phase and a fluid phase that are coupled through mechanical, inertial, and viscous effects. Compared to a single-phase analysis, the effects of pore fluid on the dynamic response of a two-phase saturated soil are primarily manifested in terms of effective density and hydraulic damping.; Effective soil density is related to the fraction of pore water that moves with the solid skeleton during shear wave propagation. Hydraulic damping is related to the energy dissipation caused by viscous forces and relative motions between solid and fluid phases. Theoretical investigations based on Blot theory indicate that, for small strains, the ratio of effective soil density to saturated soil density (always ≤1) and the hydraulic damping ratio are functions of specific gravity of solids, porosity, hydraulic conductivity, and wave frequency. The consideration of effective soil density and hydraulic damping may be important for high hydraulic conductivity materials (sands and gravels). If saturated soil density is used in such cases, calculated values of shear wave velocity will be underestimated and calculated values of shear modulus will be overestimated. Under rotational (shear) excitations, hydraulic damping in sands and gravels may have an important contribution to total soil damping, especially at small shear strain levels when the skeleton damping is small. Under compression wave excitations, hydraulic damping is influenced by the degree of saturation and boundary drainage conditions.; Numerical investigations were also conducted on the effects of compressible pore fluid on large strain consolidation and of finite media strain on shock wave propagation. Results show that increasing fluid compressibility has the effect of accelerating the consolidation process at early times and slightly delaying consolidation at later times. Results also demonstrate that finite strain-induced geometrical nonlinearities may have important effects on shock wave propagation with regard to particle velocity and wave speed and, therefore, should not be neglected.
机译:该研究的主要目的是研究孔隙流体对完全饱和土壤动力特性的影响。饱和土壤被建模为由固相和液相通过机械,惯性和粘性作用耦合的两相系统。与单相分析相比,孔隙流体对两相饱和土动力响应的影响主要表现在有效密度和水力阻尼方面。有效土壤密度与在剪切波传播过程中随固体骨架移动的孔隙水分数有关。液压阻尼与粘性力以及固相和液相之间的相对运动引起的能量消耗有关。基于印迹理论的理论研究表明,对于小应变,有效土壤密度与饱和土壤密度之比(始终≤1)和水力阻尼比是固体比重,孔隙率,水力传导率和波动频率的函数。对于高导水率的材料(沙和砾石),有效土壤密度和水力阻尼的考虑可能很重要。如果在这种情况下使用饱和土壤密度,则剪切波速度的计算值将被低估,剪切模量的计算值将被高估。在旋转(剪切)激励下,沙子和砾石中的水力阻尼可能对总土壤阻尼有重要贡献,特别是在骨架阻尼小的情况下,在较小的剪切应变水平下。在压缩波激励下,液压阻尼受饱和度和边界排水条件的影响。还对可压缩孔隙流体对大应变固结和有限介质应变对冲击波传播的影响进行了数值研究。结果表明,增加流体可压缩性具有在早期加速固结过程并在稍后的时间稍微延迟固结的作用。结果还表明,有限应变引起的几何非线性可能对冲击波传播的粒子速度和波速产生重要影响,因此不应忽略。

著录项

  • 作者

    Qiu, Tong.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号