首页> 外文学位 >Design optimization of deployable wings.
【24h】

Design optimization of deployable wings.

机译:可展开机翼的设计优化。

获取原文
获取原文并翻译 | 示例

摘要

Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.
机译:变形技术是无人机设计的重要方面,尤其是在可部署系统方面。这种系统的设计对车辆的性能有重要影响。本研究工作的主要重点是从3个竞争设计中确定最佳的可部署机翼设计,并开发其中一种可部署机翼设计以在研究机构中进行测试。开发了Matlab代码,以基于顺序优化策略来优化3种可部署机翼概念的充气,可充气伸缩式和刚性折叠机翼。作为代码一部分的约束包括其收起状态下的包装约束,展开部分的固定长度和最小L / D约束。该代码确定了所有3种设计的最佳重量,最佳的重量设计是充气机翼设计。这是由于表皮材料柔韧,也是由于展开的机翼部分没有刚性部件。研究的另一个目标涉及开发充气式伸缩翼。原型在风洞中进行了测试,而实际机翼在高空舱中进行了测试,以确定在如此高的风速和海拔60,000 ft的情况下,部署速度,输入压力,分析和预测机翼的部署顺序和行为。这些测试的结果使我们能够得出伸缩式机翼从根部到叶尖部分的展开顺序。结果被用来分析机翼的部署时间。正如预期的那样,部署时间随着输入压力的增加而减少。结果还显示,随着高度的增加,机翼的展开速度也会增加。当机翼在90,000ft的最大海拔压力下进行测试时就证明了这一点,该压力远高于60,000ft的设计海拔。

著录项

  • 作者

    Gaddam, Pradeep.;

  • 作者单位

    Oklahoma State University.;

  • 授予单位 Oklahoma State University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2012
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号