首页> 外文学位 >The influence of multiple interacting global changes on the structure and function of a California annual grassland ecosystem.
【24h】

The influence of multiple interacting global changes on the structure and function of a California annual grassland ecosystem.

机译:多种相互作用的全球变化对加利福尼亚年度草地生态系统的结构和功能的影响。

获取原文
获取原文并翻译 | 示例

摘要

Global environmental changes expected over the coming century have the potential to alter the structure and function of the Earth's ecosystems. The research presented in this dissertation was performed as part of the Jasper Ridge Global Change Experiment (JRGCE), a multi-year, multi-collaborator research effort. Starting in November, 1998 the JRGCE simulated future environmental conditions by factorially applying the following treatments to plots of intact, natural annual grassland vegetation: elevated atmospheric carbon dioxide (CO 2), warming, nitrogen (N) deposition, and increased precipitation. This research sought to understand how these multiple, interacting global changes altered various aspects of plant ecology, including the timing of growth (phenology), plant-herbivore interaction, plant competition with soil microbes for nutrients, and nutrient limitation via decomposition feedbacks.; Species-level phenology in the JRGCE was shifted by the global changes in surprising ways. Warming accelerated development of all species, while elevated CO2 and N-deposition significantly delayed the development of the dominant grasses, and moderately accelerated development of forbs.; In addition to altering the timing of plant activity, global changes are expected to alter the availability of C and N, thus effecting patterns of plant growth and tissue chemistry. Shifting tissue chemistry has the potential to further alter interactions among plants and herbivores, soil microbes, and other decomposers. This research found that elevated CO2 caused generalist gastropod herbivores to shift their feeding preferences; however, shifting tissue chemistry did not predict these shifts in feeding preferences.; Numerous lines of evidence suggested that plant growth in this system was co-limited by N and phosphorus (P) under elevated CO2. N deposition was the only treatment that increased primary production, and in some years elevated CO2 suppressed this stimulatory effect. Comparisons of plant versus microbial N and P pools found that plants effectively competed for N, but not P, under some treatment combinations. In addition, soil P availability was decreased by elevated CO2, and was not influenced by other treatments. Finally, decomposition of senesced litter grown under elevated CO2 had a lower rate of P mineralization, suggesting that P limitation under elevated CO2 occurred via shifting tissue chemistry, and slowed decomposition.
机译:预计在下个世纪中,全球环境变化可能会改变地球生态系统的结构和功能。本文的研究是作为Jasper Ridge全球变化实验(JRGCE)的一部分进行的,该实验是一项多年,多合作者的研究工作。从1998年11月开始,JRGCE通过对完整的自然年度草地植被进行以下处理,模拟了未来的环境条件:大气中二氧化碳(CO 2)升高,变暖,氮(N)沉积和降水增加。这项研究试图了解这些多重相互作用的全球变化如何改变植物生态学的各个方面,包括生长时间(物候),植物与草食动物的相互作用,植物与土壤微生物对养分的竞争以及通过分解反馈的养分限制。全球变化以惊人的方式改变了JRGCE中物种的物候态。气候变暖加速了所有物种的生长,而升高的二氧化碳和氮沉降则显着地延迟了优势草的发育,并适度地加速了草的发育。除了改变植物活动的时间外,预计全球变化也会改变碳和氮的利用率,从而影响植物的生长方式和组织化学。不断变化的组织化学有可能进一步改变植物与草食动物,土壤微生物和其他分解物之间的相互作用。这项研究发现,二氧化碳含量升高会导致一般腹足动物食草动物改变其摄食偏好。然而,组织化学变化并未预测进食偏好的这些变化。大量证据表明,在二氧化碳升高的情况下,该系统中的植物生长受到氮和磷(P)的共同限制。氮沉降是增加初级生产力的唯一方法,并且在某些年份中较高的CO2抑制了这种刺激作用。植物与微生物氮和磷库的比较发现,在某些处理组合下,植物有效竞争氮,但不竞争磷。此外,土壤中磷的有效利用因二氧化碳浓度升高而降低,并且不受其他处理的影响。最后,在升高的CO2下生长的衰落凋落物的分解具有较低的P矿化速率,这表明升高的CO2下的P限制是通过改变组织化学作用而发生的,并且减慢了分解速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号