首页> 外文学位 >Engineering Responsive, Tunable, and Multifunctional Composites.
【24h】

Engineering Responsive, Tunable, and Multifunctional Composites.

机译:工程响应性,可调性和多功能复合材料。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, engineering origami, inspired by paper art, is gaining traction in the study of reconfigurability because of its robustness as a mechanical system. These mechanical systems enable functional properties and can be extended to multiple length scales for a range of applications, including biomedicine, sensing, and smart materials. Here we explore two key strategies to enable new materials designs for responsiveness and tunable properties. The first deals with how we can combine desirable properties onto a single material, and the second deals with how the material is arranged spatially.;In this work, we focus on a layer-by-layer (LBL) assembled composite technique, which provides nanoscale control and mechanically robust composites suitable for reversible responsive systems. In the first part of the work inkjet printing is used produce these composites rapidly and to dictate spatial arrangement. We demonstrate combining LBL with inkjet printing to introduce mechanical motion in a solid nanocomposite system. Next we show using the same materials system and technique to modulate surface properties by inkjet LBL on nanopillar arrays, and propose its application in breath-activated authentication. The final part of the study focuses on an extension of the origami approach to engineer stretchability in conductive composites. Kirigami, the art of paper cutting, controls the deformation within a composite, which in turn gives us control over the strain-property relationship. The reconfigurability enabled by kirigami can also be used for tunable applications. We show that the combination of bottom-up and top-down patterning of composite materials demonstrates new opportunities in materials engineering, and suggest future directions in the field of engineering origami and kirigami.
机译:近年来,受纸艺启发的工程折纸由于其作为机械系统的坚固性而在可重构性研究中获得了关注。这些机械系统具有功能特性,可以扩展到多种长度范围,以用于包括生物医学,传感和智能材料在内的一系列应用。在这里,我们探讨了两种关键策略,以使新材料设计具有响应性和可调特性。第一个涉及如何将期望的特性组合到单个材料上,第二个涉及如何在空间上布置材料。在这项工作中,我们重点研究了逐层(LBL)组装的复合技术,该技术提供了纳米级控制和机械坚固的复合材料,适用于可逆响应系统。在工作的第一部分中,使用喷墨印刷快速生产这些复合材料并决定空间布置。我们演示了将LBL与喷墨打印相结合,以在固体纳米复合材料系统中引入机械运动。接下来,我们展示使用相同的材​​料系统和技术通过纳米柱阵列上的喷墨LBL调节表面性能,并提出其在呼吸激活身份验证中的应用。研究的最后一部分着眼于折纸方法的扩展,以延展导电复合材料的工程师可拉伸性。剪纸技术Kirigami控制复合材料中的变形,从而使我们可以控制应变-特性关系。 kirigami启用的可重新配置性也可以用于可调应用程序。我们表明,复合材料的自下而上和自上而下的图案组合展示了材料工程中的新机遇,并为工程折纸和折纸领域提出了未来的方向。

著录项

  • 作者

    Shyu, Terry C.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Materials science.;Nanotechnology.;Theoretical physics.;Mechanics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号