首页> 外文学位 >Multi-scale Current Activated Tip-based Sintering of Powder-based Materials.
【24h】

Multi-scale Current Activated Tip-based Sintering of Powder-based Materials.

机译:粉末基材料的多尺度电流激活基于尖端的烧结。

获取原文
获取原文并翻译 | 示例

摘要

Spark Plasma Sintering (SPS) is a process that has stimulated worldwide interest for the rapid consolidation of powder-based materials where electric current has played a major role. In this dissertation, the localization of SPS through current activated tip-based sintering (CATS) is presented where electric current is selectively applied to small targeted regions of a green compact/powder bed via a precision controlled electrically conductive small tip. The unique tip-specimen geometry allows for locally controlled temperature and current distributions that can result in microstructural modifications on the micro-scale. A novel experimental setup was used to investigate the spatial and temporal temperature evolution in CATS under continuous electric current exposure. Both tip and compact surface temperatures were found to be a function of current exposure time, particle size and green compact density. The concept of effective current density is introduced to explain the findings in addition to the role of electrical and thermal conductivities. A finite element model was developed revealing surface and subsurface temperature profiles in CATS, which were supported by experimental findings. The unique tip-specimen configuration in CATS and its associated localized effects has been used to rapidly produce highly consolidate regions in addition to functionally graded porous materials on the micro-scale under a continuous current mode. The effects of initial green density and particle size on the porosity profile and pore size distribution in the developed micro-scale functionally graded material are discussed. The use of micro-scale tips (10 & 50 mum) in a moving tip configuration was established using a novel micro-CATs machine, where the effects of tip speed and current intensity were studied on nickel and copper powders with varying initial green density and particle size (down to 500nm). The precision controlled movement of the tips under current exposure enabled the consolidation of the material in remarkably thin regions (5 mum) enabling micro-scale processing. Slower tip speeds at higher current intensities produced the highest degree of consolidation. Smaller particle sizes and higher initial green density powder compacts tend to experience higher quality consolidated lines due to a smaller inter-particle spacing.
机译:火花等离子体烧结(SPS)这一过程激起了全世界对于快速固结粉末基材料的兴趣,其中电流起着主要作用。在本文中,提出了通过电流激活的基于尖端的烧结(CATS)对SPS进行定位的方法,其中电流通过精密控制的导电小尖端选择性地施加到生坯/粉末床的小目标区域。独特的尖端试样几何形状允许局部控制温度和电流分布,这可能导致微观结构的微观结构改变。一种新颖的实验装置被用来研究连续电流暴露下CATS中的时空温度演变。发现尖端温度和压坯表面温度均是电流暴露时间,粒度和生压坯密度的函数。引入有效电流密度的概念来解释这些发现,以及导电性和导热性的作用。建立了一个有限元模型,揭示了CATS中的表面和地下温度分布,并得到了实验结果的支持。除了在连续电流模式下在微观尺度上功能分级的多孔材料外,CATS中独特的尖端试样配置及其相关的局部效应已被用于快速产生高度固结的区域。讨论了初始生坯密度和粒度对已开发的微米级功能梯度材料中孔隙率分布和孔径分布的影响。使用新型micro-CATs机器建立了可移动尖端配置中的微型尖端(10和50 mum)的使用,其中研究了尖端速度和电流强度对具有不同初始生坯密度和粒径(低至500nm)。尖端在电流暴露下的精确控制运动使材料能够在非常薄的区域(<5微米)内固结,从而可以进行微型加工。在较高电流强度下较慢的刀尖速度会产生最高程度的固结。较小的颗粒尺寸和较高的初始生坯密度粉末压块由于较小的颗粒间间距而倾向于具有较高质量的固结线。

著录项

  • 作者

    El Desouky, Ahmed Mohamed.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号