首页> 外文学位 >Computational study of vibrational qubits in anharmonic linear ion traps.
【24h】

Computational study of vibrational qubits in anharmonic linear ion traps.

机译:非谐线性离子阱中振动量子位的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

A string of cold ions confined in a linear trap represents a man-made quantum object with a broad range of applications in atomic and molecular spectroscopy, such as high-precision measurement of atomic properties. An efficient isolation from the environment guarantees excellent coherent properties of such systems and makes them suitable for practical realization of the quantum information processing. The pioneering theoretical [Cirac and Zoller] and experimental [Wineland and Monroe] work in 1990s resulted in the explosive expansion of this field during the last decade. In this dissertation an alternative new method for controlling the quantized motional/vibrational states of ions in a trap is explored theoretically. It is proposed to create small anharmonicity in the trapping potential which would modify the spectrum of states and allow addressing the state-to-state transitions selectively. In this approach all ions remain in the ground electronic state and their motion is controlled adiabatically and coherently by applying the optimally shaped electric fields (RF). The optimal control theory, accurate numerical calculation of the energies and wavefunctions, and numerical propagation of wave packets are employed. Two sources of vibrational anharmonicity are studied: the intrinsic Coulomb anharmonicity due to the ion-ion interactions and the external anharmonicity of the trapping potential. It is shown that the magnitude of Coulomb anharmonicity is insufficient for the control. In contrast, anharmonicity of the trapping potential allows controlling the motion of ions very accurately. It is demonstrated that one ion in a slightly anharmonic trap can be easily controlled and used to represent one qubit. A multi-qubit system can be created by employing a long progression of states of a single ion, or by trapping multiple ions and controlling several normal vibration modes of the ion string. Up to four qubits are modeled in this work and accurate pulses are optimized for a set of universal quantum gates: NOT, conditional NOT (CNOT) and Hadamard transformation. The control field for Shor's algorithm (quantum algorithm for factorization onto prime numbers) is also obtained. It is demonstrated that a careful choice of system properties allows achieving very high accuracy of qubit transformations, up to 0.999.
机译:束缚在线性阱中的一串冷离子代表了人造的量子物体,在原子和分子光谱学中具有广泛的应用,例如原子性质的高精度测量。与环境的有效隔离确保了此类系统的出色连贯性,并使它们适合于量子信息处理的实际实现。 1990年代开创性的理论研究[Cirac和Zoller]和实验性研究[Wineland and Monroe]导致了该领域在过去十年中的爆炸性扩展。本文从理论上探讨了一种用于控制阱中离子的定量运动/振动态的新方法。提出在捕获势中产生小的非谐性,这将改变状态的频谱并允许选择性地解决状态到状态的转变。在这种方法中,所有离子都保持在基态电子状态,并且通过施加最佳形状的电场(RF)绝热和相干地控制其运动。使用了最优控制理论,能量和波函数的精确数值计算以及波包的数值传播。研究了振动非谐性的两个来源:由于离子-离子相互作用而产生的固有库仑非谐性和陷阱势的外部非谐性。结果表明,库仑非谐度的大小不足以进行控制。相反,俘获势的非谐性允许非常精确地控制离子的运动。结果表明,轻度非谐阱中的一个离子可以很容易地控制并用来表示一个量子比特。多量子位系统可以通过采用单个离子的长时间状态或捕获多个离子并控制离子串的几种正常振动模式来创建。在这项工作中,最多模拟了四个量子位,并且针对一组通用量子门优化了精确的脉冲:NOT,有条件的NOT(CNOT)和Hadamard变换。还获得了Shor算法(用于分解为质数的量子算法)的控制字段。结果表明,仔细选择系统属性可以实现非常高的qubit转换精度,最高可达0.999。

著录项

  • 作者

    Wang, Lei.;

  • 作者单位

    Marquette University.;

  • 授予单位 Marquette University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 319 p.
  • 总页数 319
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号