首页> 外文学位 >A First Principles Investigation of Proton Chemistry in Perovskite-Type Oxides.
【24h】

A First Principles Investigation of Proton Chemistry in Perovskite-Type Oxides.

机译:钙钛矿型氧化物中质子化学的基本原理研究。

获取原文
获取原文并翻译 | 示例

摘要

Certain acceptor-doped perovskite-type oxides show significant promise for deployment into a number of electrochemical device applications, including fuel cells, batteries, and electrolyzers, owing to their rapid proton conductivities at high temperatures. However, limitations in bulk material hydration and slow grain boundary conductivities have reduced the viability of these materials in intermediate temperatures applications. This thesis work uses density functional theory to gain a fundamental understanding of proton and defect chemistry within various perovskite environments in order to identify strategies to increase proton concentration and improve overall proton conductivity.;First, material hydration was probed within yttrium-doped barium cerate (BCY) to examine how the thermodynamics of material hydration are influenced by dopant concentration. A model was derived from solely first principle techniques to describe hydration within BCY as a function of dopant concentration, temperature, and partial pressure of water. The resulting model can be used to screen for favorable perovskite-dopant combinations with enhanced hydration capabilities.;Next, defect segregation was investigated in the more complex interfacial environment to probe the origin of low proton conductivity across perovskite grain boundaries (GB). The results of this study suggest that screening for perovskite-dopant combinations with strong dopant-oxygen bond strengths may reduce the segregation of dopant ions and oxygen vacancies to the GB interface, mitigating the development of a positive GB core and enhancing proton conduction across the GB.;Finally, proton stability was assessed at various interfacial regions within the perovskite material. An examination of proton adsorption at the BaZrO3-vacuum interface reveals a destabilization of protons in the first subsurface layer of the perovskite, yielding a potential barrier for proton diffusion into and out of the perovskite membrane. An electronic analysis of oxygen ions indicates that the oxygen p-band center influences proton adsorption strength. This p-band center model was shown to accurately describe adsorption trends within bulk BCY as well. An analysis of proton adsorption at BaZrO3-metal heterointerfaces displayed a stabilization of protons in the near heterointerfacial environment compared to the BaZrO 3-vacuum surface. This stabilization reduces the barrier for proton diffusion near the perovskite interface and likely leads to increased proton concentrations at the perovskite-metal heterointerface.
机译:某些受主掺杂的钙钛矿型氧化物由于在高温下具有快速的质子传导性,因此显示出可广泛应用于包括燃料电池,电池和电解槽在内的许多电化学装置应用的前景。但是,散装材料水合的限制和缓慢的晶界电导率降低了这些材料在中温应用中的生存能力。本论文使用密度泛函理论对各种钙钛矿环境中的质子和缺陷化学有一个基本的了解,从而确定提高质子浓度和改善整体质子电导率的策略。;首先,在掺钇的铈钡中探测了材料的水合作用( BCY),以检查掺杂剂浓度如何影响材料水化的热力学。仅从第一原理技术得出的模型就将BCY中的水合作用描述为掺杂剂浓度,温度和水分压的函数。所得模型可用于筛选具有增强水合作用能力的良好钙钛矿-掺杂剂组合。接下来,在更复杂的界面环境中研究了缺陷偏析,以探查跨越钙钛矿晶界(GB)的低质子电导率的起源。这项研究的结果表明,筛选具有强掺杂剂-氧键强度的钙钛矿-掺杂剂组合可能会减少掺杂剂离子和氧空位向GB接口的偏析,从而减轻了正性GB核的形成并增强了跨GB的质子传导最后,在钙钛矿材料内的各个界面区域评估了质子稳定性。在BaZrO3-真空界面处质子吸附的检查显示出钙钛矿第一表面下质子的不稳定,产生了质子扩散进钙钛矿膜的潜在屏障。氧离子的电子分析表明,氧p带中心会影响质子吸附强度。该p波段中心模型也显示了准确描述整体BCY内的吸附趋势。与BaZrO 3真空表面相比,分析质子在BaZrO3-金属异质界面处的吸附表明质子在近异质界面环境中稳定。这种稳定作用减小了质子在钙钛矿界面附近扩散的障碍,并可能导致钙钛矿-金属异质界面处的质子浓度增加。

著录项

  • 作者

    Tauer, Tania Allison.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号