首页> 外文学位 >Optimization of three-dimensional surface topography in hard turning.
【24h】

Optimization of three-dimensional surface topography in hard turning.

机译:硬车削中三维表面形貌的优化。

获取原文
获取原文并翻译 | 示例

摘要

Hard Turning has the potential to provide an alternative to grinding in some finish machining applications. The technical and economic viability of hard turned components has been well documented and includes elimination of coolant, lower energy consumption, high metal removal rates, ability to machine thin wall sections, easy swarf removal, ability to machine a variety of component profiles on the same machine tool, increased flexibility and speed, decreased set-up times, reduced production times and surface quality comparable if not better than those obtained by grinding. Clearly, a fuller understanding of finish hard turning will require knowledge of the complete system and of the mutual interactions between the machine characteristics, material properties and process parameters. Tool wear, residual surface profiles, surface integrity and surface texture obtainable are problem areas that need to be addressed. This research aims to develop a methodology to aid in the process planning of hard turning in order to optimize surface texture, a key measure of functionality and reliability of a component in service. Typically Average Surface Roughness Ra has been widely used in industry to establish surface texture needed for a given application. It is now known that the single parameter Ra is inadequate to define the functionality of a surface texture. The quality of a surface can be determined by the nature of its interaction with another surface. Thus a surface with significant peaks will not make as good a bearing surface as a surface with deep valleys and low peaks. Thus, while two different surfaces may have similar values of Ra, they behave differently under fatigue loading conditions. 3-D visualization of expected surface texture will facilitate optimization of machining parameters to produce function specific surfaces. An investigation of some surface texture prediction models available in literature is carried out. The advantages and shortcomings of these models are discussed. Also, criteria for an efficient and feasible 3-D surface texture prediction model are developed. A new prediction method based on neuro-fuzzy techniques is proposed. Also, optimization using some proposed 3-D surface parameters is carried out and compared with the results of those obtained using 2-D parameters.;The software programs developed can play a vital role in process planning in manufacturing industry to justify the potential transfer to hard turning from grinding. More importantly, they provide a mechanism to visualize, predict, and optimize the functionally useful 3-D surface topography and reduce the proliferation or rash of scale-type 2-D parameters.
机译:在某些精加工应用中,硬车削有可能提供替代磨削的潜力。硬车削零件的技术和经济可行性已得到充分证明,包括消除冷却液,降低能耗,高金属去除率,能够加工薄壁部分,易于切屑,在同一零件上加工各种零件轮廓的能力机床,增加的灵活性和速度,减少的设置时间,减少的生产时间和表面质量,即使不比通过研磨获得的结果更好。显然,对精加工的更全面的了解将需要了解整个系统以及机器特性,材料特性和工艺参数之间的相互影响。可获得的工具磨损,残余表面轮廓,表面完整性和表面纹理是需要解决的问题领域。这项研究旨在开发一种方法,以协助进行硬车削的工艺规划,以优化表面​​纹理,这是服务中组件功能和可靠性的关键指标。通常,平均表面粗糙度Ra已在工业中广泛用于建立给定应用所需的表面纹理。现在已知,单个参数Ra不足以定义表面纹理的功能。一个表面的质量可以通过其与另一个表面相互作用的性质来确定。因此,具有明显峰的表面将不如具有深谷和低峰的表面那样好。因此,尽管两个不同的表面可能具有相似的Ra值,但它们在疲劳载荷条件下的行为却有所不同。预期表面纹理的3D可视化将有助于优化加工参数,以生成功能特定的表面。进行了一些文献中可用的表面纹理预测模型的研究。讨论了这些模型的优缺点。此外,开发了一种有效且可行的3-D表面纹理预测模型的标准。提出了一种基于神经模糊技术的预测方法。同样,使用一些建议的3-D表面参数进行了优化,并与使用2-D参数获得的结果进行了比较。;开发的软件程序可以在制造业的过程规划中发挥至关重要的作用,以证明潜在的转移至磨削时很难转弯。更重要的是,它们提供了一种机制,可以可视化,预测和优化功能上有用的3-D表面形貌,并减少比例类型2-D参数的扩散或出疹。

著录项

  • 作者

    Coutinho, Rayan Felix.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号