首页> 外文学位 >A micromechanics based simulation and experimental approach to predict surface integrity in precision hard turning.
【24h】

A micromechanics based simulation and experimental approach to predict surface integrity in precision hard turning.

机译:基于微力学的仿真和实验方法来预测精密硬车削中的表面完整性。

获取原文
获取原文并翻译 | 示例

摘要

Hard turning involves large strain, high strain rate, high temperature, microstructures, and potential loading history. An internal state variable (ISV) plasticity model has been incorporated into finite element analysis (FEA) of hard turning AISI 52100 steel (62 HRc) to understand the nature of material deformations. It was found that the material properties obtained from a compression test may better reflect the overall cutting responses.;The rotation of second phase particles of AISI 52100 steel during turning and grinding was characterized. In addition, a microscale FEA model was developed to incorporate the random microstructures in micromachining conditions. The micromachining phenomena such as size effect, high stress concentration and low temperature in the microstructure region were recovered by the simulation model.;A hybrid FEA model was developed with the concept of plowed depth to predict residual stress profiles. Residual stress was predicted by simulating a dynamic turning process followed by a stress relaxation process. The predicted residual stress characteristics agreed with the experimental ones. A transition of residual stress profile was recovered at the critical plowed depth. The effects of cutting speed, friction coefficient and inelastic heat coefficient on residual stress profiles were also studied.;The contribution of tool/work friction and material plastic deformation to cutting temperature was decoupled by the FEA model. It showed that a relative large plowed depth recovered the hook shaped residual stress profile by turning at low tool/work friction, while small plowed depths recovered the pattern of residual stress profile by grinding. Only a very large plowed depth recovered the hook shaped residual stress profile at large tool/work friction. Compared to residual stress with a rigid tool, the predicted residual stress profile using tool properties showed an increased compressive residual stress at the surface and shifted the maximum compressive residual stress from the subsurface to the surface. The plastic deformation of work material contributed the majority of cutting temperature, while tool/work friction contribution was secondary. Residual stress reversal from subsurface maximum residual stress to surface maximum residual stress may occur when tool/work friction increases.
机译:硬车削涉及大应变,高应变率,高温,微观结构和潜在的加载历史。内部状态变量(ISV)塑性模型已纳入硬车削AISI 52100钢(62 HRc)的有限元分析(FEA)中,以了解材料变形的性质。结果表明,压缩试验得到的材料性能可以更好地反映整体切削响应。表征了AISI 52100钢第二相颗粒在车削和磨削过程中的旋转。此外,开发了微型FEA模型,以在微加工条件下合并随机微结构。通过仿真模型,恢复了微观结构区域内的尺寸效应,高应力集中和低温等微加工现象。基于犁深概念,建立了混合有限元分析模型,以预测残余应力分布。通过模拟动态车削过程,然后模拟应力松弛过程来预测残余应力。预测的残余应力特征与实验一致。在临界犁入深度处恢复了残余应力分布的过渡。还研究了切削速度,摩擦系数和非弹性热系数对残余应力分布的影响。通过FEA模型解耦了刀具/工作摩擦和材料塑性变形对切削温度的影响。结果表明,较大的犁入深度可通过在较低的工具/工件摩擦力下转动来恢复钩形残余应力分布,而较小的犁入深度可通过磨削恢复残余应力分布的模式。在很大的工具/工作摩擦力下,只有非常大的犁入深度才能恢复钩形残余应力轮廓。与使用刚性工具的残余应力相比,使用工具属性预测的残余应力轮廓显示出表面上的压缩残余应力增加,并且最大压缩残余应力从地下转移到表面。工作材料的塑性变形是切削温度的主要来源,而工具/工作摩擦的影响次之。当工具/工件摩擦力增加时,残余应力可能会从地下最大残余应力反转为表面最大残余应力。

著录项

  • 作者

    Anurag, Subhash.;

  • 作者单位

    The University of Alabama.;

  • 授予单位 The University of Alabama.;
  • 学科 Engineering Mechanical.;Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号