首页> 外文学位 >3D maneuvers for asymmetric under-actuated rigid body.
【24h】

3D maneuvers for asymmetric under-actuated rigid body.

机译:非对称欠驱动刚体的3D操作。

获取原文
获取原文并翻译 | 示例

摘要

Most spacecraft are designed to be maneuvered to achieve pointing goals. This is generally accomplished by designing a three-axis control system. This work explores new maneuver strategies when only two control inputs are available: (i) sequential single-axis maneuvers and (ii) three-dimensional (3D) coupled maneuvers.;The sequential single-axis maneuver strategies are established for torque, time, and fuel minimization applications. The resulting control laws are more complicated than the equivalent results for three-axis control because of the highly nonlinear control switch-times. Classical control approaches lead to optimal, but discontinuous control profiles. This problem is overcome by introducing a torque-rate penalty for the torque minimization case. Alternative approaches are also considered for achieving smooth continuous control profiles by introducing a cubic polynomial multiplicative control switch smoother for the time and fuel minimization cases. Numerical and analytical results are presented to compare optimal maneuver strategies for both nominal and failed actuator cases.;The 3D maneuver strategy introduces a homotopy algorithm to achieve optimal nonlinear maneuvers minimizing the torque. Two cases are considered: (i) one of the three-axis control actuators fails and (ii) two control actuators fail among four control actuators. The solution strategy first solves the case when all three actuators are available. Then, the failed actuator case is recovered by introducing a homotopy embedding parameter, epsilon, into the nonlinear dynamics equation. By sweeping epsilon, a sequence of neighboring optimal control problems is solved that starts with the original maneuver problem and arrives at the solution for the under-actuated case. As epsilon approaches 1, the designated actuator no longer provides control inputs to the spacecraft, effectively modeling the failed actuator condition. This problem is complex for two reasons: (i) the governing equations are nonlinear and (ii) epsilon fundamentally alters the spacecraft's controllability. Davidenko's method is introduced for developing an ordinary differential equation for the costate variable as a function of epsilon. For each value of epsilon, the costate initial conditions are iteratively adjusted so that the terminal boundary conditions for the 3D maneuver are achieved. Optimal control applications are presented for both rest-to-rest and motion-to-rest cases that demonstrate the effectiveness of the proposed algorithm.
机译:大多数航天器被设计成可实现指向目标的机动。这通常是通过设计三轴控制系统来实现的。当只有两个控制输入可用时,本工作将探索新的机动策略:(i)顺序单轴机动和(ii)三维(3D)耦合机动;确定顺序单轴机动策略的扭矩,时间,和燃料最小化应用。由于高度非线性的控制切换时间,因此得出的控制律比三轴控制的等效结果更为复杂。经典的控制方法可产生最佳的但不连续的控制曲线。通过为扭矩最小化情况引入扭矩率损失来解决此问题。还考虑了通过在时间和燃料最小化情况下引入三次多项式乘法控制开关平滑器来实现平滑连续控制曲线的替代方法。给出了数值和分析结果,以比较标称和失效执行器情况下的最优操纵策略。3D操纵策略引入了同伦算法,以实现使扭矩最小化的最优非线性操纵。考虑两种情况:(i)三轴控制执行器之一发生故障,并且(ii)四个控制执行器中两个控制执行器发生故障。解决方案策略首先解决所有三个执行器都可用的情况。然后,通过将同构嵌入参数epsilon引入非线性动力学方程,来恢复发生故障的执行器情况。通过扫描ε,解决了一系列相邻的最优控制问题,这些问题从原始的操纵问题开始,并为欠驱动情况提供了解决方案。随着ε接近1,指定的执行器不再向航天器提供控制输入,从而有效地模拟了失败的执行器状况。这个问题很复杂,有两个原因:(i)控制方程是非线性的;(ii)ε从根本上改变了航天器的可控性。引入了戴维年科(Davidenko)的方法,以开发作为变量的ε函数的常变量。对于epsilon的每个值,反复调整肋骨初始条件,以便获得3D操纵的最终边界条件。提出了针对静止和静止情况的最优控制应用,证明了所提算法的有效性。

著录项

  • 作者

    Kim, Dong Hoon.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号