首页> 外文学位 >Magnetism in Complex Oxides Probed by Magnetocaloric Effect and Transverse Susceptibility.
【24h】

Magnetism in Complex Oxides Probed by Magnetocaloric Effect and Transverse Susceptibility.

机译:磁热效应和横向磁化率探测复合氧化物中的磁性。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic oxides exhibit rich complexity in their fundamental physical properties determined by the intricate interplay between structural, electronic and magnetic degrees of freedom. The common themes that are often present in these systems are the phase coexistence, strong magnetostructural coupling, and possible spin frustration induced by lattice geometry. While a complete understanding of the ground state magnetic properties and cooperative phenomena in this class of compounds is key to manipulating their functionality for applications, it remains among the most challenging problems facing condensed-matter physics today. To address these outstanding issues, it is essential to employ experimental methods that allow for detailed investigations of the temperature and magnetic field response of the different phases.;In this PhD dissertation, I will demonstrate the relatively unconventional experimental methods of magnetocaloric effect (MCE) and radio-frequency transverse susceptibility (TS) as powerful probes of multiple magnetic transitions, glassy phenomena, and ground state magnetic properties in a large class of complex magnetic oxides, including La0.7Ca0.3- xSrxMnO3 (x = 0, 0.05, 0.1, 0.2 and 0.25), Pr0.5Sr0.5MnO3, Pr1-xSrxCoO 3 (x = 0.3, 0.35, 0.4 and 0.5), La5/8- xPrxCa3/8MnO3 (x = 0.275 and 0.375), and Ca3Co2O 6.;First, the influences of strain and grain boundaries, via chemical substitution and reduced dimensionality, were studied via MCE in La0.7Ca 0.3-xSrxMnO 3. Polycrystalline, single crystalline, and thin-film La0.7Ca 0.3-xSrxMnO 3 samples show a paramagnetic to ferromagnetic transition at a wide variety of temperatures as well as an observed change in the fundamental nature of the transition (i.e. first-order magnetic transition to second order magnetic transition) that is dependent on the chemical concentration and dimensionality.;Systematic TS and MCE experiments on Pr0.5Sr0.5MnO 3 and Pr0.5Sr0.5CoO3 have uncovered the different nature of low-temperature magnetic phases and demonstrate the importance of coupled structural/magnetocrystalline anisotropy in these half-doped perovskite systems. These findings point to the existence of a distinct class of phenomena in transition-metal oxide materials due to the unique interplay between structure and magnetic anisotropy, and provide evidence for the interplay of spin and orbital order as the origin of intrinsic phase separation in manganites.;While Pr0.5Sr0.5MnO3 provides important insights into the influence of first- and second-order transitions on the MCE and refrigerant capacity (RC) in a single material, giving a good guidance on the development of magnetocaloric materials for active magnetic refrigeration, Pr1-xSrxCoO 3 provides an excellent system for determining the structural entropy change and its contribution to the MCE in magnetocaloric materials. We have demonstrated that the structural entropy contributes significantly to the total entropy change and the structurally coupled magnetocrystalline anisotropy plays a crucial role in tailoring the magnetocaloric properties for active magnetic refrigeration technology.;In the case of La5/8-xPr xCa3/8MnO3, whose bulk form is comprised of micron-sized regions of ferromagnetic (FM), paramagnetic (PM), and charge-ordered (CO) phases, TS and MCE experiments have evidenced the dominance of low-temperature FM and high-temperature CO phases. The "dynamic" strain liquid state is strongly dependent on magnetic field, while the "frozen" strain-glass state is almost magnetic field independent. The sharp changes in the magnetization, electrical resistivity, and magnetic entropy just below the Curie temperature occur via the growth of FM domains already present in the material, even in zero magnetic field. The subtle balance of coexisting phases and kinetic arrest are also probed by MCE and TS experiments, leading to a new and more comprehensive magnetic phase diagram.;A geometrically frustrated spin chain compound Ca3Co 2O6 provides an interesting case study for understanding the cooperative phenomena of low-dimensional magnetism and topological magnetic frustration in a single material. Our MCE studies have yielded new insights into the nature of switching between multi-states and competing interactions within spin chains and between them, leading to a more comprehensive magnetic phase diagram.
机译:磁性氧化物在其基本物理性质上表现出丰富的复杂性,这由结构,电子和磁性自由度之间的复杂相互作用决定。这些系统中经常出现的常见主题是相位共存,强磁结构耦合以及晶格几何形状可能引起的自旋受挫。全面了解此类化合物的基态磁性和协作现象是操纵其应用功能的关键,但它仍然是当今凝聚态物理面临的最具挑战性的问题。为了解决这些悬而未决的问题,必须采用允许对不同相的温度和磁场响应进行详细研究的实验方法。在本博士学位论文中,我将演示相对较常规的磁热效应实验方法(MCE)和射频横向磁化率(TS)作为强大的探针,可对多种复杂的磁性氧化物(包括La0.7Ca0.3- xSrxMnO3(x = 0,0.05,0.1)中的多个磁性跃迁,玻璃态现象和基态磁性进行探测,0.2和0.25),Pr0.5Sr0.5MnO3,Pr1-xSrxCoO 3(x = 0.3、0.35、0.4和0.5),La5 / 8- xPrxCa3 / 8MnO3(x = 0.275和0.375)和Ca3Co2O 6;通过MCE研究了La0.7Ca 0.3-xSrxMnO 3中的应变和晶界的影响(通过化学取代和减小的尺寸)。多晶,单晶和薄膜La0.7Ca 0.3-xSrxMnO 3样品显示出顺磁性到铁磁性过渡到温度变化以及观察到的转变的基本性质发生变化(即一阶磁跃迁到二阶磁跃迁)取决于化学浓度和尺寸。; Pr0.5Sr0.5MnO 3和Pr0.5Sr0.5CoO3的系统TS和MCE实验揭示了低温磁的不同性质在这些半掺杂的钙钛矿体系中,证明了结构/磁晶各向异性耦合的重要性。这些发现指出,由于结构和磁各向异性之间的独特相互作用,过渡金属氧化物材料中存在独特的现象类别,并为自旋和轨道有序的相互作用提供了证据,这是锰铁矿固有相分离的起源。 ;虽然Pr0.5Sr0.5MnO3可提供对单一材料中一阶和二阶跃迁对MCE和致冷剂容量(RC)的影响的重要见解,但为主动磁致冷的磁热材料的开发提供了很好的指导, Pr1-xSrxCoO 3为确定结构熵变化及其对磁热材料中MCE的贡献提供了出色的系统。我们已经证明,结构熵对总熵的变化有显着贡献,并且结构耦合的磁晶各向异性在为主动磁制冷技术定制磁热特性方面起着至关重要的作用。在La5 / 8-xPr xCa3 / 8MnO3的情况下,体形由铁磁(FM),顺磁(PM)和电荷有序(CO)相的微米级区域组成,TS和MCE实验已证明低温FM和高温CO相占主导地位。 “动态”应变液体状态很大程度上取决于磁场,而“冻结”应变玻璃状态几乎与磁场无关。刚好低于居里温度的磁化强度,电阻率和磁熵的急剧变化是由于材料中已经存在的FM域的生长而发生的,即使在零磁场中也是如此。通过MCE和TS实验还探究了共存相和动力学停滞之间的微妙平衡,从而得出了一种新的,更全面的磁相图。几何受阻的自旋链化合物Ca3Co 2O6为理解低价的协同现象提供了有趣的案例研究。单一材料中的三维磁性和拓扑磁性受挫。我们的MCE研究获得了对多态之间的转换性质以及自旋链内以及它们之间竞争竞争相互作用的新见解,从而得出了更全面的磁相图。

著录项

  • 作者

    Bingham, Nicholas S.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号