首页> 外文学位 >Magnetism of complex oxide thin films, interfaces and heterostructures probed by synchrotron techniques and model devices.
【24h】

Magnetism of complex oxide thin films, interfaces and heterostructures probed by synchrotron techniques and model devices.

机译:用同步加速器技术和模型装置探测复杂氧化物薄膜,界面和异质结构的磁性。

获取原文
获取原文并翻译 | 示例

摘要

The nature of magnetism in materials of reduced dimensions and in the proximity to other materials is both a fundamental and technological question that has yet to be fully understood. This dissertation explores the magnetic properties of spinet and perovskite complex oxide thin films, interfaces and heterostructures by a variety of techniques, with particular emphasis on element-specific synchrotron radiation techniques and magnetotransport of magnetic tunnel junction devices.;The first area of investigation explores the unconventional magnetic ground states found in spinel oxide thin films. In single films of NiMn 2O4, which exhibit an anomalous magnetic ground state, we find that the magnetic double exchange interactions are dramatically changed upon modifying the Mn cation properties of this material. This results in a selective quenching of one of the two equilibrium magnetic phases found in the bulk form. For ultrathin NiFe204 thin films, we reproduce the effect of increased magnetization with decreasing film thickness seen previously in the literature, and using element-specific synchrotron techniques, we directly demonstrate a dramatic increase in the magnetization of the Ni and Fe cations with decreasing film thickness while the cation valences and cation inversion remain largely unchanged.;The second area of investigation explores the unconventional magnetic phenomena at the interfaces between two highly spin polarized materials (Fe 3O4 and La0.7Sr0.3MnO3) with two different magnetic insulators (NiMn2O4 and NiFe2O4). At the isostructural spinel-spinel interfaces (NiMn2O4/Fe3O4 and NiFe2 O4/Fe3O4), we find strong magnetic coupling and magnetic properties not found in either constituent film. At the non-isostructural spinel-perovskite interface (NiMn2O 4/La0.7Sr0.3MnO3 and NiFe2O 4/La0.7Sr0.3MnO3), one surprisingly obtains complete magnetic decoupling between the two adjacent ferromagnetic films due to the frustrated magnetic exchange interactions at the ferrimagnet/ferromagnet interface.;The final area of investigation joins these films and interfaces into functional oxide heterostructures. A novel spintronic architecture is demonstrated, called the hybrid spin filter/magnetic tunnel junction, which implements long range magnetism into the barrier layer of a magnetic tunnel junction device. Heterostructures with magnetic barrier layers at low temperatures (Fe 3O4/NiMn2O4/La0.7Sr 0.3MnO3) and room temperature (Fe3O4/NiFe 2O4/La0.7Sr0.3MnO3) show that long-range magnetism directly influences the spin transport and can provide added functionality to these systems.
机译:尺寸减小的材料以及与其他材料相邻的材料中的磁性本质是尚待充分理解的基本和技术问题。本论文通过多种技术探讨了尖晶石和钙钛矿复合氧化物薄膜的磁学性质,界面和异质结构,特别着重于特定元素的同步辐射技术和磁性隧道结器件的磁输运。在尖晶石氧化物薄膜中发现非常规的磁性基态。在显示出异常磁性基态的NiMn 2O4单层膜中,我们发现,磁性双交换相互作用在改变该材料的Mn阳离子特性后发生了显着变化。这导致以块状形式发现的两个平衡磁相之一的选择性淬火。对于超薄的NiFe204薄膜,我们再现了先前文献中看到的随着膜厚度减小而增加的磁化效果,并且使用特定于元素的同步加速器技术,我们直接证明了Ni和Fe阳离子的磁化强度随膜厚度减小而显着增加。第二个研究领域探讨了两种高度自旋极化的材料(Fe 3O4和La0.7Sr0.3MnO3)与两种不同的磁绝缘体(NiMn2O4和NiFe2O4)之间的非常规磁现象。 )。在等结构的尖晶石-尖晶石界面(NiMn2O4 / Fe3O4和NiFe2 O4 / Fe3O4)上,我们发现在任一组成膜中均未发现强磁性耦合和磁性。在非等结构的尖晶石-钙钛矿界面(NiMn2O 4 / La0.7Sr0.3MnO3和NiFe2O 4 / La0.7Sr0.3MnO3)处,由于两个相邻铁磁膜之间的受挫的磁交换相互作用,令人惊讶地获得了两个相邻铁磁膜之间的完全磁解耦。铁磁/铁磁界面。;研究的最终领域是将这些薄膜和界面连接成功能性氧化物异质结构。展示了一种新型的自旋电子学体系结构,称为混合自旋滤波器/磁性隧道结,该结构将远距离的磁性实现到磁性隧道结器件的势垒层中。在低温(Fe 3O4 / NiMn2O4 / La0.7Sr 0.3MnO3)和室温(Fe3O4 / NiFe 2O4 / La0.7Sr0.3MnO3)下具有磁性势垒层的异质结构表明,长程磁性直接影响自旋传输,并可以提供这些系统的功能。

著录项

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.;Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号