首页> 外文学位 >Magneto-Electronic Phase Separation at Perovskite Oxide Interfaces: Origin and Consequences.
【24h】

Magneto-Electronic Phase Separation at Perovskite Oxide Interfaces: Origin and Consequences.

机译:钙钛矿氧化物界面的磁电相分离:成因和后果。

获取原文
获取原文并翻译 | 示例

摘要

The remarkable functionality of perovskite oxides, when combined with the favorable matching of lattice, chemistry, and thermodynamics at their interfaces, provides many opportunities for new physics and applications. These applications include solid oxide fuel cells, ferroelectric memory, and many other oxide electronic/spintronic devices. The interface between a ferromagnetic (FM) or metallic doped perovskite (e.g. La1-xSrxMnO 3, La1-xSrxCoO3) and a non-magnetic insulator (I) (e.g. SrTiO3, LaAlO3) is a fundamental building block in such structures. The wide range of ground states that give rise to such diverse functionalities in these systems occurs due to close competition between the various degrees of freedom. This close competition however, also poses a serious problem. Maintaining high spin polarization, magnetization, and metallic conductivity at such interfaces has in fact emerged as a significant challenge. This is clearly evident in manganite based magnetic tunnel junctions, where the TMR ratio falls rapidly with temperature.;In this work, we have used the SrTiO3(001)/La1-xSr xCoO3 system to understand the underlying physics of the suppression in magnetic and transport properties near the interface. We have found that this deterioration is a result of nanoscopic magneto-electronic phase separation (MEPS) in the interface region, at compositions that are electronically homogeneous in bulk. The system forms nanoscopic ferromagnetic (FM) clusters embedded in an insulating non-FM matrix near the interface, resulting in suppressed magnetization and insulating transport. Indirect evidence of the interfacial MEPS is made by magnetometry and magnetotransport measurements. Direct proof of the existence of the short-ranged FM clusters is made by small angle neutron scattering (SANS). The thickness (t*) of this magnetic phase separated interfacial region increases remarkably with the decrease in doping (x), finally diverging as the bulk critical doping (xc = 0.175) for metal-insulator-transition (MIT) is approached. Using Z-contrast STEM/EELS measurements we found that this magnetic phase separation is solely chemical in origin, and is driven by subtle depth-wise variations in Sr and O content, leading to the depletion in local hole doping near the interface.;In sharp contrast, LaAlO3(001)/La1-xSrxCoO 3 and SrTiO3(110)/La1-xSrxCoO 3 interfaces display ferromagnetic and metallic behavior to much lower thickness. STEM/EELS measurement for SrTiO3(110)/La1-xSr xCoO3 interfaces reveals a uniform depth-wise Sr and O distribution unlike SrTiO3(001)/La1-xSrxCoO3. We believe that this contrast in the chemical profiles for SrTiO3(110)/La 1-xSrxCoO3 and SrTiO3(001)/La 1-xSrxCoO3 interfaces is a combined effect of surface energy, dopant solubility, and strain state. The findings of this thesis work unequivocally suggest that SrTiO3(110) are better surfaces than SrTiO3(001) for the fabrication of magnetic perovskite based electronic devices.
机译:钙钛矿氧化物的出色功能性,与它们界面处的晶格,化学和热力学的良好匹配相结合,为新的物理和应用提供了许多机会。这些应用包括固体氧化物燃料电池,铁电存储器和许多其他氧化物电子/自旋电子器件。铁磁(FM)或金属掺杂的钙钛矿(例如La1-xSrxMnO 3,La1-xSrxCoO3)和非磁性绝缘体(I)(例如SrTiO3,LaAlO3)之间的界面是此类结构的基本组成部分。由于各个自由度之间的密切竞争,导致在这些系统中产生这种不同功能的基态范围很广。然而,这种紧密的竞争也带来了严重的问题。在这样的界面上保持高自旋极化,磁化和金属电导率实际上已成为一项重大挑战。这在基于锰铁矿的磁性隧道结中很明显,那里的TMR比随温度迅速下降。在这项工作中,我们使用SrTiO3(001)/ La1-xSr xCoO3系统了解抑制磁性和磁性的基本原理。界面附近的传输属性。我们已经发现,这种劣化是由于界面区域的纳米级磁电相分离(MEPS)造成的,该成分在整体上是电子均质的。该系统形成纳米铁磁(FM)簇,嵌入在界面附近的绝缘非FM矩阵中,从而抑制了磁化和绝缘传输。界面MEPS的间接证据是通过磁力测定和磁传输测量得出的。小角度中子散射(SANS)直接证明了短程FM团​​簇的存在。该磁性相分离的界面区域的厚度(t *)随着掺杂(x)的减少而显着增加,最终随着接近金属-绝缘体转变(MIT)的本体临界掺杂(xc = 0.175)而发散。使用Z对比STEM / EELS测量,我们发现这种磁相分离仅是化学起源,并且受Sr和O含量的细微深度变化驱动,导致界面附近局部空穴掺杂的耗尽。与之形成鲜明对比的是,LaAlO3(001)/ La1-xSrxCoO 3和SrTiO3(110)/ La1-xSrxCoO 3界面显示出低得多的厚度的铁磁和金属行为。与SrTiO3(001)/ La1-xSrxCoO3不同,对SrTiO3(110)/ La1-xSr xCoO3界面的STEM / EELS测量显示出均匀的深度Sr和O分布。我们认为,SrTiO3(110)/ La 1-xSrxCoO3和SrTiO3(001)/ La 1-xSrxCoO3界面的化学特性差异是表面能,掺杂剂溶解度和应变状态的综合影响。本论文工作的发现明确表明,在制造磁性钙钛矿基电子器件中,SrTiO3(110)的表面比SrTiO3(001)更好。

著录项

  • 作者

    Sharma, Manish.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 314 p.
  • 总页数 314
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号