首页> 外文学位 >Magneto-electronic phase separation in strontium doped perovskite cobaltites.
【24h】

Magneto-electronic phase separation in strontium doped perovskite cobaltites.

机译:锶掺杂钙钛矿钴矿中的磁电子相分离。

获取原文
获取原文并翻译 | 示例

摘要

Magneto-electronic phase separation refers to the presence of multiple magnetic and electronic phases within a material that is chemically homogeneous. It is very common in oxides and has been related to their most exciting properties such as superconductivity and colossal magnetoresistance (CMR). In this work, phase separation in perovskite La1-xSr xCoO3 was investigated comprehensively by conventional magnetometry and electrical measurements as well as Small Angle Neutron Scattering (SANS), Nuclear Magnetic Resonance (NMR), and Transmission Electronic Microscopy (TEM). All the work leads to a consistent picture based on short range ferromagnetic ordering and intrinsic magnetic phase separation. When the doping is less than 18%, the doped cobaltites separate into ferromagnetic (FM) metallic clusters embedded in the non-FM insulating matrix. With increasing x, the ferromagnetic clusters become more populous, and coalesce with each other, forming a long-range ferromagnetic network. The metal insulator transition occurs at the same x value, which can be described by a simple percolation transition. This phase separation occurs without experiencing any structural changes or chemical inhomogeniety by TEM analysis. Unlike their manganite counterparts, where the phase separation often occurs on the mesoscopic length scale, the phase separation in cobaltites happens at the nm scale, of the order 10-30 A.;The direct evidence of phase separation is proven by NMR and small angle neutron scattering. Both 59Co NMR and high field 139 La NMR have established clearly the inhomogeneity with ferromagnetic phase, spin---glass phase and paramagnetic phase coexisting in La1--x SrxCoO3 over the entire doping concentration and temperature range. SANS confirm that La1--xSrxCoO 3 phase separates into ferromagnetic metallic clusters embedded in a non-ferromagnetic semiconducting matrix. On the insulating side of the MIT, the ferromagnetic clusters are isolated, while on the metallic side of the MI transition, there exists long range ferromagnetic ordering.;The consequences of this intrinsic nanoscale phase separation were probed. The formation of FM clusters in a non-FM matrix results in an intergranular giant magnetoresistance effect analogous to artificial heterostructures, the existence of glassy transport phenomena analogous to the relaxor ferroelectrics, and a simple percolation threshold at x = 0.18.
机译:磁电子相分离是指在化学均质的材料中存在多个磁相和电子相。它在氧化物中非常常见,并且与它们最令人兴奋的特性(例如超导性和巨大磁阻(CMR))有关。在这项工作中,通过常规的磁力测量和电学测量以及小角中子散射(SANS),核磁共振(NMR)和透射电子显微镜(TEM),全面研究了钙钛矿La1-xSr xCoO3中的相分离。所有工作都基于短距离铁磁排序和固有磁相分离得出一致的图像。当掺杂量小于18%时,掺杂的钴会分离为嵌入非FM绝缘基质中的铁磁(FM)金属簇。随着x的增加,铁磁团簇变得更大,并且彼此融合,形成一个长距离铁磁网络。金属绝缘体的转变以相同的x值发生,这可以通过简单的渗滤转变来描述。通过TEM分析,发生该相分离而没有任何结构变化或化学不均匀性。与它们的锰矿对应物不同,相分离通常发生在介观的长度尺度上,而钴酸盐的相分离发生在10-30 A的nm尺度上; NMR和小角度证明了相分离的直接证据中子散射。在整个掺杂浓度和温度范围内,La1–x SrxCoO3中共存的铁磁性相,自旋-玻璃相和顺磁性相均具有59Co NMR和139 La NMR高场。 SANS证实La1-xSrxCoO 3相分离成嵌入非铁磁半导体矩阵中的铁磁金属簇。在MIT的绝缘侧,铁磁簇被隔离,而在MI过渡的金属侧,存在长距离铁磁有序性;探测了这种固有的纳米级相分离的结果。在非FM矩阵中形成FM团簇会导致类似于人工异质结构的晶间巨磁阻效应,类似于弛豫铁电体的玻璃态输运现象的存在以及x = 0.18的简单渗透阈值。

著录项

  • 作者

    Wu, Jing.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号