首页> 外文学位 >The mineralogic origins of magnetic remanence in silicate-hosted magnetite inclusions.
【24h】

The mineralogic origins of magnetic remanence in silicate-hosted magnetite inclusions.

机译:硅酸盐基质磁铁矿包裹体中剩磁的矿物学成因。

获取原文
获取原文并翻译 | 示例

摘要

The seminal achievement of the paleomagnetic community over the last half-century was the successful reconstruction of 300 million years of reversal history of the Earth's magnetic field. This paleomagnetic timescale continues to be helpful to geophysicists studying plate tectonics, paleontologists studying evolution, and stratigraphers studying basin development. The reason this timescale covers only 1/15th of the Earth's past is because typical magnetic recorders, such as basalt and pelagic limestone, become progressively more rare and mineralogically altered with age. Pre-Mesozoic supracrustal rocks that have eluded alteration are not numerous enough to fully describe the magnetic field behavior during the three billion years encompassed within ancient geologic terrains.; This dissertation aims to lay the foundation for a new rock magnetic recorder that will allow researchers to investigate the behavior of the early Earth's geomagnetic field. Magnetic inclusions in silicates are the products of subsolidus precipitation (exsolution) during initial cooling and are capable of recording stable magnetizations consistent with expected geomagnetic field orientations. They are often found in the common igneous minerals clinopyroxene, plagioclase, orthopyroxene, amphibole, olivine and apatite, and in the metamorphic minerals sillimanite and saphirrine. Because the magnetic inclusions are isolated within their silicate hosts, they have the advantage of being mineralogically stable in the face of variations in temperature, pressure, chemical environment, and redox state caused by common geologic processes such as metamorphism, weathering, and hydrothermal alteration. Additionally, minerals such as clinopyroxene and plagioclase are major constituents of gabbros and anorthosites, which are commonly preserved in Precambrian shield areas.; The inclusions acquire their magnetizations as they pass through their blocking temperatures (530-580°C). Some inclusions experience a second unmixing event, subdividing the original magnetic inclusion into thousands of smaller magnetite blocks separated by ulvospinel lamellae. These nanometer-scale mineral structures create an unusually stable assemblage of magnetically interacting particles.; The ubiquity of these magnetic inclusions in mafic intrusive rocks indicates their potential utility in studying the Pre-Mesozoic magnetic field and elucidating early plate tectonic crustal motions. In addition, their presence in within the pyroxenes and plagioclases of oceanic gabbros supports the probability that they are significant contributors to seafloor magnetism.
机译:在过去的半个世纪中,古磁界的开创性成就是成功重建了3亿年的地球磁场反转历史。这个古磁时标对研究板块构造的地球物理学家,研究演化的古生物学家和研究盆地发育的地层学家仍然有帮助。该时标仅覆盖地球过去的1/15的原因是因为典型的磁记录仪(例如玄武岩和上层石灰岩)变得越来越稀有,并且随着年龄的增长在矿物学上也发生了变化。尚无变化的前中生代上地壳岩石数量不足以完全描述古代地质地形所涵盖的三十亿年期间的磁场行为。本文旨在为新型岩石磁记录仪奠定基础,该磁记录仪将使研究人员能够研究地球早期地磁场的行为。硅酸盐中的磁性夹杂物是初始冷却时亚固相沉淀(析出)的产物,能够记录与预期的地磁场方向一致的稳定磁化强度。它们通常在常见的火成岩矿物中有斜发辉石,斜长石,斜长石,角闪石,橄榄石和磷灰石以及变质矿物硅线石和红宝石红石。由于磁性夹杂物被隔离在其硅酸盐主体中,因此具有在变质,风化和热液蚀变等常见地质过程引起的温度,压力,化学环境和氧化还原状态变化方面矿物学稳定的优势。此外,矿物质如斜辉石和斜长石是辉长岩和钙长石的主要成分,通常保存在前寒武纪盾构区。夹杂物通过其阻塞温度(530-580°C)时会获得其磁化强度。一些夹杂物经历了第二次解混事件,将原始的磁性夹杂物细分为数千个由ulspinespinel薄片隔开的较小的磁铁矿块。这些纳米级的矿物结构产生了异常稳定的磁性相互作用粒子集合。这些磁性包裹体在镁铁质侵入岩中的普遍存在表明它们在研究前中生代磁场和阐明早期板块构造地壳运动方面的潜在效用。此外,它们存在于海洋辉长岩的辉石和斜长石中,这证明了它们是造成海底磁性的重要因素。

著录项

  • 作者

    Feinberg, Joshua Moser.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Geophysics.; Mineralogy.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;矿物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号