首页> 外文学位 >Endgame strategies for planetary moon orbiters.
【24h】

Endgame strategies for planetary moon orbiters.

机译:行星月球轨道器的残局策略。

获取原文
获取原文并翻译 | 示例

摘要

Delivering an orbiter to a planetary moon such as Titan or Europa requires an exorbitant amount of fuel if the trajectory is not carefully and cleverly planned. V-infinity leveraging maneuvers are an effective means to reduce total Delta-V requirements to achieve orbit about a planetary satellite. This work seeks to characterize optimal trajectories making use of flybys, leveraging maneuvers, and capture orbits in order to minimize fuel requirements. With the aid of customized tools to construct, map, and analyze sequences of resonances and maneuvers, we derive heuristics of global optima and formulate a theoretical minimum. The theoretical minimum, which is found using an infinite series of flybys and leveraging maneuvers, results in a Delta-V savings of over 70% when compared to a direct insertion during flyby. We then generate numerical results, which show that the optimal location for performing V-infinity reduction maneuvers is not necessarily at apoapsis, due to targeting constraints. By plotting total Delta-V vs. time-of-flight for tens of thousands of generated sequences, a Pareto front is created of the most efficient sequences for each given flight time. This Pareto front shows that while infinite missions are not possible, it is feasible to reduce the total Delta-V by 50% with only a modest increase in flight time. Increasing the mission duration further does not result in significant reductions.;It is shown that periodic orbits exist in the restricted three-body problem whose Jacobi constants correspond to a positive V-infinity in the two-body problem. This indicates that these orbits are classically hyperbolic and yet are gravitationally bound to the vicinity of the target body. This dissertation explores the limits and usefulness of these hyperbolic periodic orbits and their application to the endgame problem. Families of orbits are generated using a single shooting method and integrated into the final phase of V-infinity leveraging sequences. Using a hyperbolic periodic orbit to capture to the vicinity of a target moon following an optimized sequence of leveraging maneuvers and flybys yields significant fuel savings (60-70%) over direct trajectories.
机译:如果没有精心周密地计划轨道,则将轨道飞行器运送到诸如Titan或Europa之类的行星月球需要大量燃料。 V无限杠杆操纵是降低总Delta-V要求以实现绕行星卫星运行的有效方法。这项工作旨在利用飞越,利用操纵和捕获轨道来描绘最佳轨迹,以最大程度地减少燃料需求。借助定制的工具来构造,绘制和分析共振和操纵序列,我们推导了全局最优解的启发式方法并制定了理论上的最小值。理论上的最小值是使用无数次飞越和杠杆操纵而发现的,与飞越过程中直接插入相比,Delta-V节省了70%以上。然后,我们生成数值结果,结果表明,由于定位限制,执行V-infinity减少演习的最佳位置不一定处于顶点。通过绘制成千上万个生成序列的总Delta-V与飞行时间的关系,可以为每个给定的飞行时间创建最有效序列的Pareto前沿。此帕累托阵线表明,尽管不可能执行无限任务,但可以将总Delta-V降低50%,而飞行时间仅适度增加是可行的。进一步增加任务的持续时间不会导致明显的减少。研究表明,在受限的三体问题中存在周期性轨道,该三体问题的雅可比常数对应于两体问题中的正V-无穷大。这表明这些轨道经典上是双曲线的,但在重力上却束缚在目标物体的附近。本文探讨了这些双曲周期轨道的局限性和实用性,以及它们在结局问题中的应用。轨道族是使用单一射击方法生成的,并已整合到V无限杠杆序列的最后阶段。在优化的操纵和飞越序列之后,使用双曲线周期轨道捕获到目标卫星附近,与直接轨迹相比,可节省大量燃料(60-70%)。

著录项

  • 作者

    Woolley, Ryan.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号