首页> 外文学位 >Optics-Based Quantum Information and Sensing Platforms Utilizing the Nitrogen-Vacancy Center in Diamond.
【24h】

Optics-Based Quantum Information and Sensing Platforms Utilizing the Nitrogen-Vacancy Center in Diamond.

机译:利用钻石中的氮空位中心的基于光学的量子信息和传感平台。

获取原文
获取原文并翻译 | 示例

摘要

The nitrogen-vacancy (NV) center is a point defect in the diamond crystal lattice, forming a localized-electron system with unique optical and spin properties. In particular, optical control and read-out of the spin state, combined with long spin coherence times, make it an attractive candidate for both high-sensitivity magnetometry and as a solid-state spin qubit for quantum information processing (QIP). This dissertation documents the design, implementation, and characterization of systems aimed at each of these applications.;First, the development of a GaP-on-diamond integrated photonics platform for QIP is presented. This work is motivated in part by the scalability advantages that are inherent to photonic device integration, and more fundamentally by the large potential improvements in performance. Specifically, coupling NV centers to integrated optical resonators should enable orders of magnitude improvement in entanglement generation rate through improved photon collection efficiency. This will be crucial for the development of even small-scale QIP systems, as NV-NV spin entanglement has so far only been demonstrated at rates far below the spin decoherence rate, effectively limiting NV-based QIP to two-qubit systems. Large numbers of integrated optical devices were fabricated, including optical resonators. Passive transmission measurements were performed on hundreds of individual devices, enabling statistical performance metrics and device yields to be extracted for several components. Device-coupled single-photon measurements are also presented, indicating photon collection efficiencies as high as 9%, corresponding to an efficiency-limited entanglement rate far exceeding the best reported spin decoherence rate. These results put the GaP-on-diamond platform in a competitive position relative to other photonic integration efforts for QIP.;Next, a magneto-optical microscope for bio-sensing applications is presented. The microscope images photoluminescence emitted from a thin, dense sheet of NV centers within the top 200 nm of a diamond chip. Changes in the photoluminescence associated with the spin population of the defects allow for optically detected magnetic resonance (ODMR), with the resonant frequency depending on the local magnetic field. Two-dimensional images of the magnetic field at the surface of the diamond are thus obtained, with a magnetic field sensitivity of 2.4 muT. The microscope was able to detect magnetic-field disturbances due to the presence of single 19-nm-diameter super-paramagnetic nanoparticles (SPNs) in wide-field ODMR images taken at room temperature. This is the first demonstration of wide-field detection of individual sub-mum magnetic particles under ambient conditions, and should enable a new class of biological imaging and sensing systems based on SPN labels.
机译:氮空位(NV)中心是金刚石晶格中的一个点缺陷,形成具有独特光学和自旋特性的局部电子系统。特别是,自旋态的光学控制和读出,加上长自旋相干时间,使其成为高灵敏度磁力测定法和量子信息处理(QIP)的固态自旋量子位的诱人候选。本文针对这些应用中的每一个,对系统进行了设计,实现和表征。首先,介绍了用于QIP的GaP-diamond集成光子学平台的开发。这项工作的部分动机是光子设备集成所固有的可伸缩性优势,更根本的原因是性能方面的巨大潜在改进。具体而言,将NV中心耦合到集成的光学谐振器应该可以通过提高光子收集效率来提高纠缠产生速率的数量级。这对于甚至小型QIP系统的开发也至关重要,因为到目前为止,NV-NV自旋纠缠仅以远低于自旋退相干率的速率证明,从而有效地将基于NV的QIP限制在两个量子位系统中。制造了包括光谐振器在内的大量集成光学器件。在数百个单独的设备上执行了无源传输测量,从而能够为几个组件提取统计性能指标和设备良率。还介绍了设备耦合的单光子测量结果,表明光子收集效率高达9%,相当于效率限制的纠缠率,远远超过了最佳报道的自旋退相干率。这些结果使GaP-on-Diamond平台相对于其他用于QIP的光子集成努力处于竞争地位。;接下来,提出了一种用于生物传感应用的磁光显微镜。显微镜成像的是从金刚石芯片顶部200 nm以内的薄而密集的NV中心片发出的光致发光。与缺陷的自旋种群有关的光致发光变化允许光学检测的磁共振(ODMR),共振频率取决于局部磁场。这样就获得了钻石表面磁场的二维图像,其磁场灵敏度为2.4 muT。在室温下拍摄的宽场ODMR图像中,显微镜能够检测到由于存在单个直径为19 nm的超顺磁性纳米颗粒(SPN)而引起的磁场干扰。这是在环境条件下对单个亚微米磁性粒子进行宽域检测的首次演示,并且应该能够启用基于SPN标签的新型生物成像和传感系统。

著录项

  • 作者

    Gould, Michael.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Quantum physics.;Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号