首页> 外文学位 >Molecular assemblies for photodriven hydrogen formation: Empirical design principles and predictive computational methods.
【24h】

Molecular assemblies for photodriven hydrogen formation: Empirical design principles and predictive computational methods.

机译:光致氢形成的分子组装:经验设计原理和预测计算方法。

获取原文
获取原文并翻译 | 示例

摘要

Artificial photosynthetic systems that efficiently drive water oxidation and hydrogen formation could provide sustainable, local sources of energy-dense fuel. In one design paradigm, linked photosensitizer-catalyst assemblies proximally position chromophore, electron relay, and catalyst components to promote ultrafast intramolecular charge separation and facilitate the use of robust organic photosensitizers with short excited state lifetimes. However, this proximity of system components also introduces competitive deactivation pathways including energy transfer, fast charge recombination, and spin or heavy-atom induced intersystem crossing. The objective of this work is to empirically derive a set of design principles and identify predictive computational methods to guide the development of assemblies that limit competitive processes and efficiently produce long-lived charge separated states for photocatalysis. To meet this goal, several photosensitizer-catalyst architectures are explored, each formed via the coordination of a pyridyl-substituted organic photosensitizer to the [Co((difluoroboryl)dimethylglyoximato)2(H2O) 2] proton reduction catalyst. Singular value decomposition and global fitting methods are developed to analyze transient absorption data and characterize photoinduced dynamics. For a simple dyad incorporating a perylene-3,4-dicarboximide chromophore, rapid excited state decay without the productive formation of a long-lived charge separated state is observed. Conversely, with a donor-bridge-acceptor-catalyst architecture comprising a perylene donor, xylene bridge, and 1,8-naphthalimide electron acceptor, decoupling of the chromophore and catalyst prevents similar deactivation and facilitates multi-step electron transfer to reduce the catalyst in > 0.99 quantum yield. To investigate the molecular design principles that would allow the accumulation of multiple charges at a single acceptor site, a key requirement for photocatalytic hydrogen formation, a series of model structures are investigated using pump-pump-probe transient absorption spectroscopy. Dianion formation via sequential photoinduced electron transfer to a central acceptor is shown and a competing energy transfer pathway identified as the main cause of low quantum yields. Finally, in a step toward computationally guided molecular design from first principles, variationally optimized configuration interaction singles theory is shown to accurately predict the energy difference and electronic coupling between charge transfer and non-charge transfer excited states for six small donor-acceptor dyads. As a result, it is expected this method may accurately predict the rates of key photoinduced electron transfer reactions.
机译:有效驱动水的氧化和氢形成的人工光合作用系统可以提供可持续的本地密集能源。在一种设计范例中,链接的光敏剂-催化剂组件在近侧定位发色团,电子中继和催化剂组分,以促进超快的分子内电荷分离,并促进使用具有短激发态寿命的坚固的有机光敏剂。但是,系统组件之间的这种接近也引入了竞争性的失活途径,包括能量转移,快速电荷重组以及自旋或重原子诱导的系统间交叉。这项工作的目的是凭经验得出一组设计原则,并确定预测性计算方法,以指导限制竞争性过程并有效产生长寿命电荷分离状态的组件开发,以进行光催化。为了达到这个目标,探索了几种光敏剂-催化剂结构,每种结构是通过吡啶基取代的有机光敏剂与[Co((二氟硼基)二甲基乙二肟基)2(H 2 O)2]质子还原催化剂的配位而形成的。开发了奇异值分解和全局拟合方法来分析瞬态吸收数据并表征光致动力学。对于掺入per-3,4-二甲酰亚胺的生色团的简单二单元组,观察到快速激发态衰变而没有形成长寿命电荷分离态。相反,对于包括per供体,二甲苯桥和1,8-萘二甲酰亚胺电子受体的供体桥受体催化剂结构,发色团和催化剂的解偶联可防止类似的失活,并促进多步电子转移以减少催化剂中的> 0.99量子产率。为了研究分子设计原理,该原理将允许在单个受体位点积累多个电荷,这是光催化氢形成的关键要求,使用泵浦泵探针瞬态吸收光谱研究了一系列模型结构。显示了通过顺序的光诱导电子转移到中央受体形成的阴离子,竞争的能量转移途径被认为是低量子产率的主要原因。最后,在从第一原理向计算指导的分子设计迈出的一步中,变异优化的构型相互作用单论被证明可以准确预测六个小供体-受体二元体的能量差以及电荷转移和非电荷转移激发态之间的电子耦合。结果,期望该方法可以准确地预测关键的光诱导电子转移反应的速率。

著录项

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 341 p.
  • 总页数 341
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号