首页> 外文学位 >Light to Electrons to Bonds: Imaging Water Splitting and Collecting Photoexcited Electrons.
【24h】

Light to Electrons to Bonds: Imaging Water Splitting and Collecting Photoexcited Electrons.

机译:从光到电子到键的结合:成像水分解并收集光激发电子。

获取原文
获取原文并翻译 | 示例

摘要

Photoelectrochemical devices can store solar energy as chemical bonds in fuels, but more control over the materials involved is needed for economic feasibility. Both efficient capture of photon energy into electron energy and subsequent electron transfer and bond formation are necessary, and this thesis explores various steps of the process. To look at the electrochemical fuel formation step, the spatially-resolved reaction rate on a water-splitting electrode was imaged during operation at a few-micron scale using optical microscopy. One method involved localized excitation of a semiconductor photoanode and recording the growth rate of bubbles to determine the local reaction rate. A second method imaged the reactant profile with a pH-sensitive fluorophore in the electrolyte to determine the local three-dimensional pH profile at patterned electrocatalysts in a confocal microscope. These methods provide insight on surface features optimal for efficient electron transfer into fuel products.;A second set of studies examined the initial process of photoexcited electron transport and collection. An independent method to measure the minority carrier diffusion length in semiconductor photoelectrodes was developed, in which a wedge geometry is back illuminated with a small scanned spot. The diffusion length can be determined from the exponential decrease of photocurrent with thickness, and the method was demonstrated on solid-state silicon wedge diodes, as well as tungsten oxide thin-film wedge photoanodes. Finally, the possibility of absorbing and collecting sub-bandgap illumination via plasmon-enhanced hot carrier internal photoemission was modeled to predict the energy conversion efficiency. The effect of photon polarization on emission yield was experimentally tested using gold nanoantennas buried in silicon, and the correlation was found to be small.
机译:光电化学装置可以将太阳能作为化学键存储在燃料中,但是为了经济可行性,需要对所涉及的材料进行更多控制。有效地将光子能量捕获为电子能量以及随后的电子转移和键形成都是必要的,并且本文探索了该过程的各个步骤。为了观察电化学燃料形成步骤,在操作过程中使用光学显微镜对在水分解电极上的空间分辨反应速率进行了成像。一种方法涉及半导体光阳极的局部激发并记录气泡的生长速率以确定局部反应速率。第二种方法是用电解质中的pH敏感荧光团对反应物分布图进行成像,以确定共聚焦显微镜中图案化电催化剂处的局部三维pH分布图。这些方法提供了对有效将电子有效转移到燃料产品中的最佳表面特征的见解。第二组研究研究了光激发电子的传输和收集的初始过程。开发了一种独立的方法来测量半导体光电电极中的少数载流子扩散长度,其中楔形几何结构被小的扫描光斑背照。扩散长度可以通过光电流随厚度的指数减小来确定,并在固态硅楔形二极管以及氧化钨薄膜楔形光阳极上证明了该方法。最后,对通过等离激元增强的热载流子内部光发射吸收和收集亚带隙照明的可能性进行了建模,以预测能量转换效率。使用埋在硅中的金纳米天线,通过实验测试了光子极化对发射率的影响,发现相关性很小。

著录项

  • 作者

    Leenheer, Andrew Jay.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Materials Science.;Nanoscience.;Chemistry General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号