首页> 外文学位 >Functional nanomaterials derived from self-assembly of peptide hybrids and amino acid amphiphiles: From diseases to devices.
【24h】

Functional nanomaterials derived from self-assembly of peptide hybrids and amino acid amphiphiles: From diseases to devices.

机译:源自肽杂化物和氨基酸两亲物自组装的功能性纳米材料:从疾病到装置。

获取原文
获取原文并翻译 | 示例

摘要

The programmed self-assembly of proteins into highly ordered nanostructures creates biomaterials displaying a wide range of physical properties often exceeding those of synthetic polymers. However, precise control of this hierarchical assembly remains a significant challenge. In fact, the uncontrolled aggregation of natural soluble protein (alpha-helix rich) into insoluble fibrillar assemblies (beta-sheet rich) known as amyloid plaques are thought to be responsible for several systemic and neurodegenerative diseases, called "amyloidosis", such as Alzheimer's, Parkinson's, mad-cow disease, and type II diabetes. In additional to the biomedical applications, the amyloid fibers have also gained rapidly growing interests in their potential as advanced nanofiber materials due to the greater-than-steel strength, flexibility, versatility, and ability to self-assemble. Because of the complexity of naturally occurring amyloid proteins, the de novo design of synthetic, short peptides that form amyloid fibers would not only facilitate the understanding of the formation of pathological amyloid fibers in nature but also provide the range of structures and functions needed for engineered nanomaterials.;In our design, a series of 16-mer peptide-dendron hybrids (PDH ), based on an intrinsically alpha-helical, alanine-rich sequence, were constructed to explore how the nature of the dendron interaction affects the conformational properties. The interaction between the dendrons was explored in hybrids by progressively increasing the interdendron spacing from i, i + 4 to i, i + 11. These studies revealed an alpha-helix to beta-sheet conformational transition that occurred in water for PDH i, i + 6 (i6) and i, i + 10 (i10), a hallmark of amyloid formation. i6 further assembled into amyloid fibers in aqueous solution. Interestingly, i10 could be induced to form either soluble nanotubes or insoluble amyloid nanofibers. The two nanostructures could be interconverted by modulating the extent of charge repulsion with changes in pH or in salt concentration. The 6 nm diameter of the nanotubes is among smallest beta-sheet peptide nanotubes that have been observed. The assembled nanostructures of i10 efficiently encapsulate hydrophobic guest molecules in water that can then be released by lowering the pH, suggesting potential to serve as vehicles for drug delivery.*;More recently, we developed a simple method for fabricating n-type semiconductor nanostructures in aqueous solutions via the beta-sheet assembly of dipeptides bearing a naphthalene diimide (NDI) side chain. Depending on the placement of the NDI group, either amyloid-like 1D helical nanofibers or twisted nanoribbons can be formed driven by beta-sheet-type hydrogen bonding along the peptide backbone and pi-pi association of NDI chromophores. Notably, this design exemplifies a shortest beta-sheet forming sequence. Fluorescence lifetime and anisotropy experiments indicate that the nature of the intermolecular packing of NDI chromophores within the nanostructures critically affects intermolecular energy migration due to effective pi-electron delocalization.;Interestingly, even simpler systems using NDI-functionalized lysine derivatives afford a facile self-assembly into well-defined nanotubes. These 1D nanostructures with n-type semiconductivity provide promising building blocks for optoelectronic nanodevices.*;*Please refer to dissertation for diagrams.
机译:蛋白质自编程为高度有序的纳米结构的自组装,创造了生物材料,显示出通常超过合成聚合物的各种物理特性。然而,对这种分级装配的精确控制仍然是一个重大挑战。实际上,天然可溶性蛋白(富含α-螺旋)的失控聚集到称为淀粉样斑块的不溶性纤维状组件(富含β-折叠)中被认为是导致几种全身和神经退行性疾病(称为“淀粉样变性”)的原因,例如阿尔茨海默氏病,帕金森氏病,疯牛病和II型糖尿病。除了生物医学应用外,淀粉样蛋白纤维还具有优于钢的强度,柔韧性,多功能性和自组装能力,因此它们作为高级纳米纤维材料的潜力也迅速引起人们的关注。由于天然存在的淀粉样蛋白的复杂性,形成淀粉样蛋白纤维的合成短肽的从头设计将不仅有助于理解自然界中病理性淀粉样蛋白纤维的形成,而且还提供了工程化所需的结构和功能范围在我们的设计中,构建了一系列16-mer肽-树枝状杂种(PDH),基于内在的α-螺旋,富含丙氨酸的序列,以探索树枝状相互作用的性质如何影响构象性质。通过逐渐增加i,i + 4到i,i + 11的齿间间距来探索杂种间树突之间的相互作用。这些研究揭示了水中PDH i,i发生了从α螺旋到β折叠的构象转变。 + 6(i6)和i,i + 10(i10),是淀粉样蛋白形成的标志。将i6进一步在水溶液中组装成淀粉样纤维。有趣的是,可以诱导i10形成可溶性纳米管或不溶性淀粉样纳米纤维。通过调节pH或盐浓度变化引起的电荷排斥程度,可以将两个纳米结构相互转化。纳米管的6纳米直径是已观察到的最小的β-折叠肽纳米管。 i10的组装纳米结构有效地将疏水性客体分子包裹在水中,然后可以通过降低pH值将其释放,这表明它有可能成为药物输送的载体。*;最近,我们开发了一种简单的方法来制造n型半导体纳米结构通过带有萘二酰亚胺(NDI)侧链的二肽的β-折叠组装而成的水溶液。根据NDI基团的位置,可以通过β-折叠型氢键沿着肽主链和NDI发色团的pi-pi缔合驱动形成淀粉样样一维螺旋纳米纤维或扭曲的纳米带。值得注意的是,该设计例示了最短的β-折叠形成序列。荧光寿命和各向异性实验表明,由于有效的pi电子离域作用,纳米结构中NDI发色团的分子间堆积性质严重影响了分子间的能量迁移;有趣的是,甚至更简单的系统使用NDI官能化的赖氨酸衍生物也提供了便捷的自组装成定义明确的纳米管。这些具有n型半导电性的一维纳米结构为光电子纳米器件提供了有希望的构建基块。*; *请参阅论文以获取图表。

著录项

  • 作者

    Shao, Hui.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Chemistry Molecular.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 440 p.
  • 总页数 440
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号