首页> 外文学位 >Symbolic identification of dynamical systems: Theory and experimental validation.
【24h】

Symbolic identification of dynamical systems: Theory and experimental validation.

机译:动力系统的符号识别:理论和实验验证。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses some of the critical and practical issues in health monitoring of multi-component human-engineered systems. The inherent complexity and uncertainty in complex systems pose a challenging problem to health monitoring, since first principle models of these systems, are usually oversimplified, inaccurate, or may not be available at all. Human-engineered multi-component systems are usually interconnected physically as well as through the use of feedback control loops. Therefore, the degradation of a single component may affect the input streams to the remaining components. Furthermore, in most practical situations, the underlying system might need to operate in different operating regimes and under diverse input conditions.;The purpose of the work reported in this dissertation is to develop a robust and computationally inexpensive system identification technique based on a formal language-theoretic formulation from the input/output characteristics. The objective here is to make the identification algorithm invariant with the input conditions, but it should be sensitive to changes in the parameters of the actual dynamical system.;The proposed method involves abstraction of a qualitative description from a general dynamical system structure, using state space embedding of the output and input data-stream and discretization of the resultant pseudo-state and input spaces. The system identification is achieved through grammatical inference techniques, and the information is extracted in a compressed form as statistical patterns of evolving anomaly through usage of symbolic dynamic filtering (SDF) serving as the feature extractor. Support vector machines (SVM) have been used for classification between nominal and faulty cases with a rigorous mathematical framework of detection rates.;Conditions for monotonicity of the symmetric Kullback-Leibler relative entropy with deteriorating fault conditions have been derived and a bound on the model likelihood has been proposed based on Lyapunov exponents.;The proposed theory has been validated on several experimental and simulation test-beds. The first of these test-beds is a permanent magnet synchronous motor undergoing a gradual degradation of the magnetic flux linkage under diverse loading conditions. This concept has also been used for fault detection on a commercial-scale two-spool turbofan engine simulation model, provided by NASA. Another experiment involves development of an integrated computer simulation model of a generic entrained-bed slagging gasifier for real-time degradation monitoring and condition-based maintenance of refractory walls. The integrated simulation model yields: (a) quasi-steady-state spatial temperature profiles at any cross-section of the gasification system, and (b) dynamic response of the refractory wall temperature that is measured by an array of sensors installed at specified locations on the external surface of the gasifier wall. The information from dynamic response of refractory temperature is processed to characterize the health status of refractory walls in the gasification system.
机译:本文解决了多组件人机系统健康监控中的一些关键和实际问题。复杂系统中固有的复杂性和不确定性给健康监控带来了挑战性的问题,因为这些系统的第一原理模型通常过于简化,不准确或根本无法使用。人工设计的多组件系统通常在物理上以及通过使用反馈控制回路相互连接。因此,单个组件的降级可能会影响到其余组件的输入流。此外,在大多数实际情况下,底层系统可能需要在不同的操作方式下和不同的输入条件下运行。本论文所报告的工作目的是开发一种基于形式语言的健壮且计算成本低廉的系统识别技术输入/输出特性的理论公式。这里的目的是使识别算法不随输入条件而变化,但应对实际动力学系统的参数变化敏感。所提出的方法涉及使用状态从抽象的动力学系统结构中提取定性描述输出和输入数据流的空间嵌入,以及生成的伪状态和输入空间的离散化。通过语法推断技术可以实现系统识别,并通过使用符号动态过滤(SDF)作为特征提取器,以压缩形式提取信息,作为演变异常的统计模式。支持向量机(SVM)已用于具有严格检测率的数学框架的正常情况和故障情况之间的分类;得出了具有恶化故障条件的对称Kullback-Leibler相对熵的单调性条件,并在模型上有界在李雅普诺夫指数的基础上提出了一种可能性。所提出的理论已经在几个实验和模拟试验台上得到了验证。这些测试台中的第一个是永磁同步电动机,在各种负载条件下,永磁同步电动机的磁通链会逐渐退化。这个概念也已用于由美国国家航空航天局(NASA)提供的商业规模的双涡旋涡扇发动机仿真模型的故障检测。另一个实验涉及开发通用夹带床排渣气化炉的集成计算机仿真模型,用于实时降解监控和基于条件的耐火墙维护。集成的模拟模型得出:(a)气化系统任何横截面的准稳态空间温度曲线,以及(b)由安装在指定位置的一系列传感器测量的耐火墙温度的动态响应在气化器壁的外表面上。处理来自耐火温度动态响应的信息,以表征气化系统中耐火墙的健康状况。

著录项

  • 作者

    Chakraborty, Subhadeep.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号