首页> 外文学位 >Polarization induced by a terahertz electric field on a conductive particle.
【24h】

Polarization induced by a terahertz electric field on a conductive particle.

机译:太赫兹电场在导电粒子上引起的极化。

获取原文
获取原文并翻译 | 示例

摘要

Interactions of an electromagnetic wave with an object of dimensions small compared to the wavelength can often be accounted for by considering the dipole moments, which are effective in explaining the scattering characteristics in the frequency range referred to as the Rayleigh region. Dielectric functions derived from polarization processes due to molecular orientation or bound charge displacements have been employed over the years to account for the scattering properties of particles. In the presence of mobile charges, bulk conductivity may be incorporated with a complex dielectric function to explain the peak in absorption near the plasma frequency exhibited by metallic particles in the optical region. With the current interest in nanostructures, an investigation of the electromagnetic properties of a conductive particle with attention given to space-charge effects would appear timely. This can be accomplished by coupling the transport equations of the charge carriers to the Maxwell's equations. Results of computations performed for elementary structures such as plates and particles revealed the screening of the internal field while dispersion and absorptions effects are shown by the complex dipole moments. To gain insight into the nature of charge-wave interactions, results based on quasi-static formulation for the electric field will be compared with those based on full-wave analysis, with special attention given to the charge and current distributions within the structure. By consideration of the physical process of charge carrier motion and lattice polarization, the equivalent circuit model for a conductive nanoparticle in the terahertz frequency range is developed. All circuit elements are of electrical nature and can be directly expressed in terms of material parameters. The equivalent circuit can serve as the basis of analysis for composite structures and aggregates of which the conductive nanoparticle is a constituent.
机译:通常可以通过考虑偶极矩来说明电磁波与尺寸比波长小的物体之间的相互作用,这对解释被称为瑞利区的频率范围内的散射特性有效。多年来,由于分子取向或束缚电荷位移而从极化过程中衍生出的介电功能已被用于解决粒子的散射特性。在存在移动电荷的情况下,可以将体电导率与复杂的介电功能结合在一起,以解释在光学区域中金属粒子所表现出的接近等离子体频率的吸收峰。随着当前对纳米结构的兴趣,研究导电颗粒的电磁特性并关注空间电荷效应将显得及时。这可以通过将电荷载流子的输运方程式与麦克斯韦方程式耦合来实现。对基本结构(如板和颗粒)的计算结果表明,内部场的屏蔽,而分散和吸收效应则由复偶极矩表示。为了深入了解电荷-波相互作用的性质,将基于电场的准静态公式的结果与基于全波分析的结果进行比较,并特别注意结构中的电荷和电流分布。考虑到电荷载流子运动和晶格极化的物理过程,建立了太赫兹频率范围内的导电纳米粒子的等效电路模型。所有电路元件均具有电气性质,可以直接根据材料参数表示。等效电路可以用作分析复合结构和以导电纳米粒子为组成的聚集体的基础。

著录项

  • 作者

    Shen, Tao.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号