首页> 外文学位 >Improving Device Efficiencies in Organic Photovoltaics through the Manipulation of Device Architectures and the Development of Low-Bandgap Materials.
【24h】

Improving Device Efficiencies in Organic Photovoltaics through the Manipulation of Device Architectures and the Development of Low-Bandgap Materials.

机译:通过操纵器件架构和开发低能带隙材料来提高有机光伏器件的效率。

获取原文
获取原文并翻译 | 示例

摘要

Over the past two decades, vast amounts of research have been conducted in the pursuit of suitable organic semiconductors to replace inorganic materials in electronic applications due to their advantages of being lightweight, flexible, and solution-processible. However, before organic photovoltaics (OPVs) can be truly competitive and commercially viable, their efficiencies must be improved significantly. In this examination, we pursue higher efficiency OPVs in two different ways. Our attempts focus on 1) altering the microstructure of devices to improve charge dissociation, charge transport, and our understanding of how these devices function, and 2) tailoring materials to achieve optimal band gaps and energy levels for use in organic electronics.;First, we demonstrate how the vertical morphology of bulk heterojunction (BHJ) solar cells, with an active layer consisting of self-assembled poly(3-hexylthiophene) (P3HT) nanowires and (6,6)-phenyl C61-butyric acid methyl ester (PCBM), can be beneficially influenced. Most device fabrication routes using similar materials employ an annealing step to influence active layer morphology, but this process can create an unfavorable phase migration where P3HT is driven toward the cathode. In contrast, we demonstrate devices that exhibit an increase in relative fullerene concentration at the top of the active layer by introducing the donor phase as a solid nanowire in the active layer solution and altering the pre-spin drying time. X-ray photoelectron spectroscopy (XPS) and conductive and photoconductive atomic force microscopy (cAFM and pcAFM) provide detailed information about how the surface of the active layer can be influenced; this is done by tracking the concentration and alignment of P3HT and PCBM domains. Using this new procedure, devices are made with power conversion efficiencies surpassing 2%. Additionally, we show that nanowires grown in the presence of the fullerene perform differently than those that are grown and mixed separately; exposure to the nanowire during self-assembly may allow the fullerene to coat nanowire surfaces and influence the photocurrent within the device. Furthermore, because we are able to carefully control the regioregularity of our P3HT, we are able to produce a series of nanowires with regioregularities ranging between 93% and 99%. X-ray diffraction (XRD) shows that as the regioregularity of the polymer increases, the coherent domain size along the long-axis of the nanowires also becomes larger. When organic field effect transistors (OFETs) are made from these materials, the hole mobility of the nanowire films also has a positive correlation with regioregularity. As the domains within the nanowires grow larger, the frequency of domain boundaries decreases, allowing charges to percolate more efficiently along the nanowire.;Additionally, we show that by introducing C60 into the active layer of P3HT:PCBM devices, we can modulate the crystal habit of the PCBM domains. Using optical microscopy and UV-vis absorption spectroscopy, we demonstrate that C60 additions alter the crystal morphology and greatly reduce the size of fullerene crystallites that are observed after extended annealing times and under aggressive aging conditions. We also show by fabricating organic field-effect transistors (OFETs) from PCBM:C60 blends that the incorporation of C60 does not adversely affect the electron mobility in these films. Finally, we show that as C60 is incorporated into P3HT:PCBM OPVs, devices become more thermally stable and do not degrade in performance as rapidly as traditional P3HT:PCBM blends.;Lastly, the synthesis of four alternating copolymers using benzo[2,1- b;3,4-b']dithiophene (BDP) as the common donor unit is presented. Incorporating BDP, which consists of fused dithiophene units with a benzene ring, into these polymers should produce a low-lying highest occupied molecular orbital (HOMO) energy level. Low-lying HOMO levels are desirable to produce high open circuit voltages (V OC) in organic BHJ photovoltaic devices. The preliminary results of their performance in solar cells, using PCBM as the electron acceptor, is presented. The VOC values follow the expected trend: increasing with decreasing HOMO level of the polymer. High VOC values of 0.81 and 0.82 V have been obtained from two polymers: PBDPBT and PBDPDPP. The highest initial power conversion efficiency (PCE) achieved in these unoptimized devices was 1.11% due to relatively low JSC values. The variation observed in the J SC values between the four polymers is discussed. Device performance is expected to increase with optimization of processing conditions for the devices.
机译:在过去的二十年中,由于其具有重量轻,柔韧性好和可溶液加工的优势,在寻求合适的有机半导体来替代电子应用中的无机材料方面进行了大量研究。但是,在有机光伏(OPV)真正具有竞争力并在商业上可行之前,必须显着提高其效率。在这项检查中,我们以两种不同的方式追求更高效率的OPV。我们的尝试着眼于1)改变器件的微观结构以改善电荷离解,电荷传输,以及我们对这些器件如何工作的理解,以及2)定制材料以实现用于有机电子产品的最佳带隙和能级。我们展示了具有由自组装聚(3-己基噻吩)(P3HT)纳米线和(6,6)-苯基C61-丁酸甲酯(PCBM)组成的活性层的本体异质结(BHJ)太阳能电池的垂直形态),可以产生有益的影响。大多数使用类似材料的器件制造路线都采用退火步骤来影响有源层的形貌,但是该过程会产生不利的相迁移,其中P3HT被驱动向阴极移动。相比之下,我们通过在活性层溶液中引入供体相作为固体纳米线并改变预旋干燥时间,展示了在活性层顶部相对富勒烯浓度增加的器件。 X射线光电子能谱(XPS)以及导电和光电导原子力显微镜(cAFM和pcAFM)提供了有关如何影响有源层表面的详细信息。这是通过跟踪P3HT和PCBM域的浓度和排列来完成的。使用这一新程序,可以制造出功率转换效率超过2%的设备。此外,我们证明了在富勒烯存在下生长的纳米线与单独生长和混合的纳米线的性能不同。自组装过程中暴露于纳米线可能会使富勒烯覆盖纳米线表面并影响器件内的光电流。此外,由于我们能够小心地控制P3HT的区域规则性,因此我们能够生产一系列区域规则性在93%至99%之间的纳米线。 X射线衍射(XRD)显示,随着聚合物的区域规则性增加,沿着纳米线长轴的相干畴尺寸也变大。当由这些材料制成有机场效应晶体管(OFET)时,纳米线薄膜的空穴迁移率也与区域规则性成正相关。随着纳米线中域的增大,域边界的频率降低,从而使电荷沿纳米线更有效地渗透。此外,我们表明,通过将C60引入P3HT:PCBM器件的有源层,我们可以调制晶体PCBM域的习惯。使用光学显微镜和紫外可见吸收光谱,我们证明了C60的添加改变了晶体形态,并大大减小了富勒烯微晶的尺寸,而富勒烯微晶在延长的退火时间和剧烈的老化条件下观察到。我们还通过从PCBM:C60共混物制造有机场效应晶体管(OFET)来表明,掺入C60不会对这些薄膜中的电子迁移率产生不利影响。最后,我们证明了将C60掺入P3HT:PCBM OPV中后,器件变得更热稳定,并且性能没有传统P3HT:PCBM混合物那样快地降解。最后,使用苯并[2,1]合成四种交替共聚物-给出了b; 3,4-b′]二噻吩(BDP)作为共同的供体单位。将由带有苯环的稠合二噻吩单元组成的BDP掺入这些聚合物中,应产生低位的最高占据分子轨道(HOMO)能级。为了在有机BHJ光伏器件中产生高开路电压(V OC),需要较低的HOMO能级。介绍了使用PCBM作为电子受体的太阳能电池性能的初步结果。 VOC值遵循预期趋势:随着聚合物HOMO含量的降低而增加。从两种聚合物:PBDPBT和PBDPDPP获得了0.81和0.82 V的高VOC值。由于相对较低的JSC值,在这些未经优化的器件中实现的最高初始功率转换效率(PCE)为1.11%。讨论了四种聚合物在J SC值中观察到的变化。随着设备处理条件的优化,设备性能有望提高。

著录项

  • 作者

    Rice, Andrew Hideo.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号