首页> 外文学位 >Physical environmental electrochemistry: Electrochemical properties of natural organic matter and iron powders.
【24h】

Physical environmental electrochemistry: Electrochemical properties of natural organic matter and iron powders.

机译:物理环境电化学:天然有机物和铁粉的电化学特性。

获取原文
获取原文并翻译 | 示例

摘要

Electron transfer is ubiquitous in nature. A thorough understanding of the rates and mechanisms of electron transfer is vital to the scientific study of natural systems. It is also important for the successful design and implementation of engineered systems that rely on electron transfer (i.e., permeable reactive barriers filled with Fe0). Since electrochemistry is the science that deals with the relationship between electricity and chemical changes, it is well suited for the study of systems in which electron transfer is important. This dissertation details the electrochemical study of two important, and different environmental systems.;The first part of this dissertation deals with the redox properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Several electrochemical techniques and experimental designs were adapted in order to obtain the best resolution of voltammograms of NOM. The peak potentials for various NOM fractions were collected and related to various electron donors and electron acceptors, given as a redox ladder. A significant result of this study was the observation that the voltammogram of an unfractionated NOM sample gave several peaks, indicating that several redox active species or moieties are present in the sample. This led us to hypothesize that there may be a continuum of potentials associated with redox active groups in NOM.;The second environmental system that was studied in this dissertation was that of the Fe0-H2O-contaminant system. Much work has been done on characterizing the rates and mechanisms of how Fe 0 reduces various contaminants. Most of these studies use high grade iron or polished Fe0 disk/coupon/wire electrodes. While these studies have provided a great deal of understanding of this system, the rates and mechanisms of iron mediated reduction by particles used in the field may be different. In order to get at important aspects of this system that are not represented in batch or column experiments, we designed, fabricated, and validated a powder disk electrode (PDE) that is able to hold various sizes of iron particulate (micro to nano).;In order to determine if our PDE would give electrochemically interpretable results, we started by packing the PDE with electrolytic Fe0(Felc). We found that by varying scan rate, rotation rate, and cavity volume: (i) the resulting voltammogram was due to the iron powder, not the underlying disk material, (ii) the cathodic reaction (2H+ + 2e - → H2(g)) is kinetically limited, and (iii) iron dissolution is affected by the mass transport of solutes (probably Fe 2+) out of the cavity pore space.;For the study of nano-iron powders (FeH2, FeBH ), we combined batch, spectroscopic and electrochemical approaches to characterize the properties of these nano iron samples. FeH2 is a two-phase material consisting of 40 nm α-Fe0 (made up of crystals approximately the size of the particles) and Fe3O 4 particles of similar size or larger containing reduced sulfur; whereas FeBH is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. We found that both nano iron samples with Fe0 cores gave more cathodic corrosion potentials (Ecorr's) than either the polished iron disk or the PDE packed with Fisher electrolytic iron.
机译:电子转移在自然界无处不在。透彻了解电子传输的速率和机制对于自然系统的科学研究至关重要。对于成功设计和实施依赖电子转移的工程化系统(即充满Fe0的可渗透反应性势垒),这也很重要。由于电化学是一门处理电与化学变化之间关系的科学,因此它非常适合于研究其中电子传输很重要的系统。本论文详细介绍了两个重要且不同的环境系统的电化学研究。本论文的第一部分研究了天然有机物(NOM)的氧化还原特性,NOM的组成和模型生物地球化学电子穿梭。为了获得NOM伏安图的最佳分辨率,对几种电化学技术和实验设计进行了调整。收集各种NOM馏分的峰值电势,并与各种电子供体和电子受体相关,以氧化还原梯形表示。这项研究的重要结果是观察到未分级的NOM样品的伏安图给出了几个峰,表明样品中存在几种氧化还原活性物质或部分。这导致我们假设NOM中可能存在与氧化还原活性基团有关的连续电位。本论文研究的第二个环境系统是Fe0-H2O污染系统。在表征Fe 0减少各种污染物的速率和机理方面已经进行了许多工作。这些研究大多数使用高级铁或抛光的Fe0圆盘/优惠券/线电极。尽管这些研究为该系统提供了很多理解,但本领域中使用的颗粒介导的铁介导还原的速率和机理可能有所不同。为了获得该系统在批处理或色谱柱实验中未体现的重要方面,我们设计,制造并验证了一种粉末圆盘电极(PDE),该电极能够容纳各种尺寸的铁微粒(微米至纳米)。 ;为了确定我们的PDE是否会给出电化学可解释的结果,我们首先将PDE与电解Fe0(Felc)一起包装。我们发现通过改变扫描速率,旋转速率和腔体体积:(i)所得的伏安图是由于铁粉而​​不是底层磁盘材料引起的,(ii)阴极反应(2H + + 2e-→H2(g) )在动力学上受到限制,并且(iii)铁的溶解受溶质(可能是Fe 2+)从腔孔空间中传出的质量影响;为了研究纳米铁粉(FeH2,FeBH),我们结合了批处理,光谱和电化学方法来表征这些纳米铁样品的特性。 FeH2是一种两相材料,由40 nmα-Fe0(由近似于颗粒大小的晶体组成)和类似尺寸或更大的Fe3O 4颗粒组成,并含有还原的硫;而FeBH主要是20-80 nm的金属Fe颗粒(聚集体<1.5 nm),其氧化物壳/涂层的氧化硼含量高。 FeBH颗粒进一步聚集成链。我们发现,与抛光铁盘或装有费舍尔电解铁的PDE相比,两种具有Fe0核的纳米铁样品均具有更大的阴极腐蚀电位(Ecorr)。

著录项

  • 作者

    Nurmi, James Thomas.;

  • 作者单位

    Oregon Health & Science University.;

  • 授予单位 Oregon Health & Science University.;
  • 学科 Biogeochemistry.;Chemistry Physical.;Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号