首页> 外文学位 >Ab Initio Molecular Dynamics Study of Nanoscale Heat Transfer and Energy Conversion.
【24h】

Ab Initio Molecular Dynamics Study of Nanoscale Heat Transfer and Energy Conversion.

机译:从头算分子动力学研究纳米级传热和能量转换。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, ab initio molecular dynamics simulation based on a plane wave/pseudopotential implementation of density functional theory was adopted to investigate nanoscale heat transfer and energy conversions for semiconductors.;The first one investigates the heat conduction process occurring in Si/Ge superlattices at selected stages from the initial point of nonzero temperature gradient to the final state of thermal equilibrium. The ab initio molecular dynamics simulation was performed to get deep sight into the detailed information of the structural, dynamic and vibrational properties of Si/Ge superlattices. The statistical comparisons of temperature evolution curves were made according to the kinetic theory. The ab initio molecular dynamics simulation outputs in the work shows reasonable thermophysical results of the thermal energy transport process. The radial distribution functions and mean square displacements were calculated and further discussions were made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) were computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons was found and their contributions to facilitate heat transfer were confirmed.;The second one studies the thermal energy transportation phenomena spanning from heat conduction of thermal radiation with the modeling of variable gap distances in different thin layer systems. By imposing thermostats to keep constant temperatures of the nanoscale thin layers, the initial thermal non-equilibrium between the neighboring layers was established under the vacuum condition. The ab initio simulations were carried out for different material combinations and interfacial distances of silicon and germanium layers. The results show significant distinctions of heat transfer under different materials and temperatures combinations. Further discussions on the equilibrium time were made to explain the simulation results.;The third one presents an ab initio molecular dynamics study of femtosecond laser processing of germanium is presented in this paper. The method based on the finite temperature density functional theory is adopted to probe the nanostructure change, thermal motion of the atoms, dynamic property of the velocity autocorrelation, and the vibrational density of states. Starting from a cubic system at room temperature (300 K) containing germanium atoms with an ordered arrangement of 1.132nm in each dimension, the femtosecond laser processing is simulated by imposing the Nose Hoover thermostat to the electronic subsystem lasting for ∼100 fs and continuing with microcanonical ensemble simulation of ∼200 fs. The simulation results show solid, liquid and gas phases of germanium under adjusted intensities of the femtosecond laser irradiation. We find the irradiated germanium distinguishes from the usual germanium crystal by analyzing their melting and dynamic properties.;As the first work of studying the nanoscale energy transport spanning from heat conduction to thermal radiation and the femtosecond laser material interaction in mechanical engineering, the simulation results highlight the promising application of the first-principles molecular dynamics in thermal engineering. We believe our results and the conclusion drawn will be quite useful in helping to resolving the heat transfer and energy conversion problem during the miniaturization of integrated circuits and molecular electronics.
机译:本文采用基于密度泛函理论的平面波/拟势实现的从头算分子动力学模拟方法,研究半导体的纳米级传热和能量转换。从非零温度梯度的初始点到热平衡的最终状态的选定阶段。从头开始进行分子动力学模拟,以深入了解Si / Ge超晶格的结构,动力学和振动特性的详细信息。根据动力学理论对温度演化曲线进行统计比较。在工作中从头算分子动力学模拟输出显示了热能传输过程的合理热物理结果。计算了径向分布函数和均方位移,并进行了进一步讨论以解释和探讨与传热现象有关的结构变化。此外,计算并绘制了两层状态的振动密度(Si / Ge)并作图,以分析不同频率的声子对热传导的贡献。发现了低频声子的相干导热,并确认了它们对促进热传递的贡献。第二部分研究了热辐射的热能传输现象,并在不同的薄层系统中采用可变间隙距离的模型。通过施加恒温器以保持纳米级薄层的恒定温度,在真空条件下建立了相邻层之间的初始热不平衡。针对硅和锗层的不同材料组合和界面距离进行了从头算起的仿真。结果表明,在不同的材料和温度组合下,传热有明显区别。进一步讨论了平衡时间以解释模拟结果。第三部分提出了从头开始的飞秒激光处理锗的分子动力学研究。采用基于有限温度密度泛函理论的方法,研究了纳米结构的变化,原子的热运动,速度自相关的动力学性质以及状态的振动密度。从室温下(​​300 K)的立方系统开始,该系统包含锗原子,每个维度上的有序排列为1.132nm,通过对电子子系统施加持续时间约100 fs的鼻子胡佛恒温器并持续进行到〜200 fs的微经典合奏模拟。仿真结果表明,在飞秒激光辐照强度调节下,锗的固,液相和气相。通过分析锗的熔化和动态特性,发现其与普通的锗晶体有所区别。作为研究从热传导到热辐射以及飞秒激光材料在机械工程中相互作用的纳米级能量传输的第一项工作,模拟结果强调了第一原理分子动力学在热工程中的有希望的应用。我们相信我们的结果和得出的结论将有助于解决集成电路和分子电子器件小型化过程中的传热和能量转换问题。

著录项

  • 作者

    Ji, Pengfei.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Engineering Mechanical.;Chemistry General.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2013
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号