首页> 外文学位 >Dynamic reservoir characterization using 4D multicomponent seismic data and rock physics modeling at Delhi Field, Louisiana.
【24h】

Dynamic reservoir characterization using 4D multicomponent seismic data and rock physics modeling at Delhi Field, Louisiana.

机译:使用4D多分量地震数据和岩石物理模型在路易斯安那州德里菲尔德进行动态储层表征。

获取原文
获取原文并翻译 | 示例

摘要

Pore pressure and CO2 saturation changes are important to detect and quantify for maximizing oil recovery in Delhi Field. Delhi Field is a enhanced oil recovery (EOR) project with active monitoring by 4D multicomponent seismic technologies.;Dynamic rock physics modeling integrates the rich dataset of core, well logs, petrographic thin sections and facies providing a link between reservoir and elastic properties. The dynamic modeling in this high porosity sandstone reservoir shows that P-wave velocity is more sensitive to CO2 saturation while S-wave velocity is more sensitive to pore pressure changes. I use PP and PS seismic data to jointly invert for Vp=Vs ratio and acoustic impedance. This technique has the advantage of adding more information to the non-unique inversion problem. Combining the inversion results from the monitor surveys of June 2010 and August 2011 provides acoustic impedance and Vp=Vs percentage differences. The time-lapse inverted response enables dynamic characterization of the reservoir by fitting the predicted dynamic models (calibrated at the wells).;Dynamic reservoir characterization adds value in this stratigraphic complex reservoir. The results indicate that reservoir heterogeneities and pore pressure gradients control the CO2 flow within the Paluxy reservoir. Injectors 148-2 and 140-1 showed CO2 is moving downdip following a distributary channel induced by differential pressure from an updip injector or a barrier caused by a heterogeneity in the reservoir. CO2 anomalies located above the Paluxy injector 148-2 indicates that CO2 is moving from the Paluxy up into the Tuscaloosa Formation. My work demonstrates that reservoir monitoring is necessary for reservoir management at Delhi Field.
机译:孔隙压力和CO 2 饱和度的变化对于最大程度地提高德里油田的采收率至关重要。德里油田是一个增强型石油采收(EOR)项目,通过4D多组分地震技术进行主动监控。;动态岩石物理建模将岩心,测井,岩相薄断面和岩相的丰富数据集集成在一起,从而在储层和弹性属性之间建立了联系。该高孔隙度砂岩油藏动力学模型表明,P波速度对CO 2 饱和度更敏感,而S波速度对孔隙压力变化更敏感。我使用PP和PS地震数据联合反演Vp = Vs比和声阻抗。该技术的优点是可以将更多信息添加到非唯一反演问题中。结合2010年6月和2011年8月的监测调查得出的反演结果可得出声阻抗和Vp = Vs百分比差异。时滞反演响应通过拟合预测的动态模型(在井中进行了校准)可以对储层进行动态表征。动态储层表征可为该地层复杂储层增加价值。结果表明,储层非均质性和孔隙压力梯度控制了Paluxy储层内CO 2 的流动。注入器148-2和140-1表示,CO 2 沿着由上倾注入器的压差引起的分流通道或由储层中的非均质性引起的屏障而向下移动。位于Paluxy注入器148-2上方的CO 2 异常表明CO 2 从Paluxy向上移动到塔斯卡卢萨组。我的工作表明,德里油田的储层管理必须进行储层监测。

著录项

  • 作者

    Carvajal Meneses, Carla C.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Geology.;Petroleum Geology.;Geophysics.
  • 学位 M.S.
  • 年度 2013
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号