首页> 外文学位 >Stochastic multiscale modeling of polycrystalline materials .
【24h】

Stochastic multiscale modeling of polycrystalline materials .

机译:多晶材料的随机多尺度模拟。

获取原文
获取原文并翻译 | 示例

摘要

Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated.;The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments.;The uncertainty quantification framework developed in this work integrates information science and materials science, and provides a new outlook to multi-scale materials modeling accounting for microstructure and process uncertainties. Predictive materials modeling will accelerate the development of new materials and processes for critical applications in industry.
机译:工程材料的机械性能对潜在的随机微观结构敏感。由微观结构变化引起的机械性能变化的量化对于预测材料的极限性能和对微观结构敏感的设计至关重要。多晶微结构高通量表征的最新进展已导致了巨大的微结构描述符和图像快照数据集。为了利用这些大规模的实验数据来计算所得的宏观性能变异性,需要对微观结构进行适当的数学表示。通过探索包含所有在统计上均与可用数据相似的允许微结构的空间,可以通过采用有效的随机仿真方法以及基于物理的确定性仿真器,来估计可能特性的分布/包络。本文的重点是随机微结构的低维表示的构建以及基于物理的高效多晶材料模拟器的开发。通过采用蒙特卡洛法和自适应稀疏网格配位法等适当的随机方法,研究了多晶材料对微结构敏感特性的变异性。论文的主要成果包括:(1)数据驱动降阶技术的发展微结构变化的表征,以构建随机多晶微结构的容许空间。 (2)开发精确有效的基于物理学的模拟器,用于基于中尺度微观结构估算材料性能。 (3)结合上述两个进展,利用有效的随机模拟方法研究了多晶材料的性能变异性;本研究开发的不确定性量化框架将信息科学与材料科学相结合,为多尺度材料建模会计提供了新的视角对于微观结构和工艺不确定性。预测性材料建模将加快工业中关键应用的新材料和工艺的开发。

著录项

  • 作者

    Wen, Bin.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Applied Mechanics.;Engineering Materials Science.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号