首页> 外文学位 >Solid- and Solution-State NMR Techniques for the Investigation of Local Ordering in Membrane-Derived Solids via Measurement of Scaled Dipolar Couplings.
【24h】

Solid- and Solution-State NMR Techniques for the Investigation of Local Ordering in Membrane-Derived Solids via Measurement of Scaled Dipolar Couplings.

机译:固态和溶液态NMR技术,用于通过测量成比例的偶极耦合来研究膜衍生固体中的局部有序性。

获取原文
获取原文并翻译 | 示例

摘要

In the low-viscosity samples used in solution-state nuclear magnetic resonance (NMR) spectroscopy, molecular tumbling occurs on a much faster timescale than a single NMR experiment. As a result, anisotropic interactions between the nuclei average to zero; and sharp, narrow, isotropic lineshapes are easily obtained. However, in systems with local order, rotational and translation mobility of molecules is significantly reduced. In this solid-state regime, anisotropic interactions are no longer motionally averaged, and three additional effects are observed that can severely complicate NMR spectra: heteronuclear and homonuclear dipolar couplings, and chemical shift anisotropy (CSA). Magic-angle spinning (MAS) is a solid-state NMR (ssNMR) technique that makes it possible to mechanically average these anisotropic effects to zero and acquire sharp, isotropic peaks analogous to those found in solution. However, the presence of dipolar couplings and CSA allows additional structural information about biomolecules to be extracted; so there is demand for NMR techniques that take advantage of anisotropic interactions.;Alignment media, such as bicelle mixtures, are used to introduce a controllable degree of anisotropy for the purpose of collecting scaled dipolar couplings in ssNMRand residual dipolar couplings (RDCs) in solution state, and their composition can be tailored to optimize the degree of order they impose and therefore the degree to which dipolar couplings and other anisotropic interactions are motionally averaged. Altering the composition of an alignment medium can also influence the temperature range over which an aligned phase exists, which is beneficial in dealing with temperature sensitive biomolecules. Switched-angle spinning (SAS) is another NMR method aimed at analyzing anisotropic interactions in the structural studies of oriented biological solids. SAS combines the advantages of the magic angle spinning with the structural information provided by heteronuclear and homonuclear dipolar couplings and CSA by correlating isotropic chemical shifts in one dimension with anisotropic information in a second dimension. Finally, symmetry-based pulse sequences introduce sophisticated spin-space selection rules into MAS experiments that allow for reintroduction of only specific NMR interactions while suppressing others.;Presented herein is current work on three related research efforts: the development and characterization of a new biologically-relevant alignment medium with increased thermal stability ideal for recovery of additional structural constraints from dipolar couplings and CSA in membrane proteins and peptides; simulation work and preliminary experiments laying the foundation for new variable-angle spinning (VAS) and switched-angle spinning (SAS) experiments optimized for structural studies of membrane proteins, peptides, and other biomolecules with local order induced by bicelles or other liquid-crystalline alignment media; and an investigation of an unusual chlorosulfolipid membrane component via a proton-detected local field experiment that utilizes a symmetry-based pulse sequence to selectively recouple heteronuclear dipolar couplings and CSA while prohibiting evolution of J-coupling, chemical shift, and homonuclear dipolar couplings.
机译:在溶液态核磁共振(NMR)光谱中使用的低粘度样品中,分子翻滚发生的时间比单个NMR实验快得多。结果,原子核之间的各向异性相互作用平均为零;容易获得清晰,狭窄,各向同性的线形。但是,在具有局部顺序的系统中,分子的旋转和平移迁移率显着降低。在这种固态状态下,各向异性相互作用不再进行运动平均,并且观察到了三个可能使NMR光谱严重复杂化的附加影响:异核和同核偶极耦合以及化学位移各向异性(CSA)。魔角旋转(MAS)是一种固态NMR(ssNMR)技术,可以将这些各向异性效应机械平均化为零,并获得类似于溶液中的尖锐各向同性峰。但是,偶极偶合和CSA的存在允许提取有关生物分子的其他结构信息。因此需要利用各向异性相互作用的NMR技术。取向介质(例如比塞勒混合物)用于引入可控制的各向异性度,目的是收集ssNMR中成比例的偶极偶合和溶液中残留的偶极偶合(RDC)。可以调整它们的组成,以优化它们施加的顺序程度,从而优化偶极耦合和其他各向异性相互作用的运动平均程度。改变取向介质的组成也可以影响存在取向相的温度范围,这对于处理对温度敏感的生物分子是有利的。转角旋转法(SAS)是另一种NMR方法,旨在分析定向生物固体的结构研究中的各向异性相互作用。 SAS通过将一维的各向同性化学位移与第二维的各向异性信息相关联,将魔角旋转的优势与异核和同核偶极耦合以及CSA提供的结构信息结合在一起。最后,基于对称性的脉冲序列将复杂的自旋空间选择规则引入到MAS实验中,从而允许仅重新引入特定的NMR相互作用,同时抑制其他相互作用。本文介绍了三项相关研究工作的最新成果:新生物学的开发和表征-具有更高热稳定性的相关比对介质,非常适合从偶极偶合和膜蛋白和肽中的CSA回收额外的结构限制;模拟工作和初步实验为新的可变角度旋转(VAS)和转换角度旋转(SAS)实验奠定了基础,该实验针对由双细胞或其他液晶诱导的局部顺序的膜蛋白,肽和其他生物分子的结构研究进行了优化对齐介质;并通过质子检测局部场实验研究了异常的氯磺脂膜成分,该实验利用基于对称性的脉冲序列选择性地重新耦合异核偶极耦合和CSA,同时禁止J耦合,化学位移和同核偶极耦合的演化。

著录项

  • 作者

    Celik, Rebecca Shapiro.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Chemistry Biochemistry.;Biophysics General.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号