首页> 外文学位 >Designing synthetic gene circuits for homeostatic regulation and sensory adaptation.
【24h】

Designing synthetic gene circuits for homeostatic regulation and sensory adaptation.

机译:设计用于稳态调节和感觉适应的合成基因电路。

获取原文
获取原文并翻译 | 示例

摘要

Living cells are exquisite systems. They are strongly regulated to perform in highly specific ways, but are at the same time wonderfully robust. This combination arises from the sophistication of their construction and operation: their internal variables are carefully controlled by complex networks of dynamic biochemical interactions, crafted and refined by billions of years of evolution. Using modern DNA engineering technology, scientists have begun to circumvent the long process of evolution by employing a rational design-based approach to construct novel gene networks inside living cells. Currently, these synthetic networks are relatively simple when compared to their natural counterparts, but future prospects are promising, and synthetic biologists would one day like to be able to control cells using genetic circuits much in the way that electronic devices are controlled using electrical circuits. The importance of precise dynamical behaviour in living organisms suggests that this endeavour would benefit greatly from the insights of control theory. However, the nature of biochemical networks can make the implementation of even basic control structures challenging. This thesis focusses specifically on the concept of integral control in this context. Integral control is a fundamental strategy in control theory that is central to regulation, sensory adaptation, and long-term robustness. Consequently, its implementation in a synthetic gene network is an attractive prospect. Here, the general challenges and important design considerations associated with engineering an in-cell synthetic integral controller are laid out. Specific implementations using transcriptional regulation are studied analytically and then in silico using models constructed with commonly available parts from the bacterium Escherichia coli. Finally, using a controller based on post-translational signalling, an on-paper design is proposed for an integral-controlled biosynthesis network intended to allow a population of engineered Saccharomyces cerevisiae cells to actively regulate the extracellular concentration of a small molecule.
机译:活细胞是精致的系统。它们受到严格的监管,可以以高度特定的方式执行,但同时又非常强大。这种结合源自其结构和操作的复杂性:它们的内部变量由动态生化相互作用的复杂网络小心控制,并由数十亿年的进化过程精心制作和完善。利用现代DNA工程技术,科学家们开始通过采用基于设计的合理方法在活细胞内部构建新的基因网络来规避进化的漫长过程。目前,这些合成网络与天然合成网络相比相对简单,但未来前景广阔,合成生物学家有一天希望能够像通过电子电路控制电子设备一样,利用遗传电路控制细胞。精确的动力学行为在生物体中的重要性表明,这种努力将大大受益于控制理论的见解。然而,生化网络的性质甚至使基本控制结构的实施也具有挑战性。本文专门针对这种情况下的积分控制概念。积分控制是控制理论中的基本策略,对于调节,感觉适应和长期鲁棒性至关重要。因此,其在合成基因网络中的实施是有吸引力的前景。在此,列出了与设计单元内合成积分控制器相关的一般挑战和重要设计注意事项。对使用转录调控的特定实现方式进行了分析研究,然后使用由大肠杆菌中通常可获得的部分构建的模型进行计算机模拟研究。最后,使用基于翻译后信号的控制器,提出了一种纸上设计方案,用于整体控制的生物合成网络,旨在使工程化酿酒酵母细胞群体能够主动调节小分子的细胞外浓度。

著录项

  • 作者

    Ang, Jordan.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Chemistry Biochemistry.;Biology Genetics.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号