首页> 外文学位 >Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy.
【24h】

Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy.

机译:通过透射电子显微镜和X射线光谱学研究水煤气变换催化剂的原子能级。

获取原文
获取原文并翻译 | 示例

摘要

Water-gas shift (WGS), CO + H2O &lrarr2; CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism.;In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures.;Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.
机译:水煤气变换(WGS),CO + H2O&lrarr2; CO2 + H2(DeltaH°= -41 kJ mol -1),是生产高纯度氢气的重要工业反应。使用商业Cu / ZnO / Al2O3催化剂来加速该反应,但是这些催化剂具有某些缺点,包括昂贵的再生过程和硫中毒。广泛的研究集中在开发替代现有技术的新催化剂上。担载的贵金属是有前途的候选物,但仍包含复杂的纳米结构,这加深了对其工作机理的理解。在本研究中,通过透射电子显微镜和X射线光谱研究了担载的Pt催化剂的结构。研究了载体相和第二金属的使用对反应动力学的影响。量化结构异质性并将其与催化剂的动力学特征相关联,以发展对催化机理的基本理解。通过原位技术检查反应环境对催化剂结构的影响。该研究得益于使用模型催化剂为纳米结构的原子级表征提供便利的介质。;基于这些研究,在惰性球形氧化铝上沉积的氧化铁纳米岛上负载的Pt的WGS转化率高48倍(归一化) (由总的Pt表面积计算)大于负载在块状氧化铁上的Pt。通过与钴共浸渍,可以提高负载在多壁碳纳米管(MWCNT)上的Pt的水相甘油重整反应的速率。合成产生了多种纳米结构,其中发现了Pt-Co双金属纳米颗粒负责观察到的促进作用。通过在MWCNTs上形成Mo 2C贴片,探索了Mo2C上负载的Pt的WGS前所未有的WGS速率,发现速率提高是由Pt-Mo双金属实体引起的。

著录项

  • 作者

    Akatay, Mehmed Cem.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号