首页> 外文学位 >Structural insights into yeast DNA repair proteins MLH1 and PMS1 by mass spectrometry.
【24h】

Structural insights into yeast DNA repair proteins MLH1 and PMS1 by mass spectrometry.

机译:通过质谱分析了解酵母DNA修复蛋白MLH1和PMS1的结构。

获取原文
获取原文并翻译 | 示例

摘要

DNA mismatch repair (MMR) is essential for the maintenance of genetic material, and the major features have been conserved over time. The primary protein components include members of the MutL family, and the two yeast members of the MutL family that are critical for MMR are MLH1 and PMS1. Mutations in MMR proteins have been implicated in carcinogenesis and can result in a complete loss of MMR activity, possibly due to structural changes in these proteins. Little is known about the tertiary structure of these proteins (especially their C-terminal domains), or their homologs in different species. The specific aims of this study are (1) to investigate the structure and determine the contact and binding sites of the MLH1 and PMS1 heterodimer; and (2) to map the DNA binding site of the N-terminal domain (NTD) of yeast DNA repair protein PMS1. The specific aims have been achieved by a combination of chemical cross-linking, surface modification, limited proteolysis, mass spectrometric characterization and molecular modeling based on the constraints determined in these experiments. The surface modification studies revealed lysine residues located on the surface of both PMS1 and MLH1. These studies implicated residues 665, 675, and 704 of MLH1 to be involved in heterodimerization. The cross-linking studies indicated residues in MLH1 that may be located at a maximum of 12 A apart. A homology model was created for the N-terminal domain of MLH1. A working model was created for the C-terminal domain of MLH1 and the potential heterodimer interaction was modeled using secondary structure prediction, sequence alignment, and the data obtained. We proposed the interaction sites for other MutL homolog heterodimers in yeast and humans. The limited proteolysis DNA binding studies with PMS1 NTD showed no proteolytic cleavage at Arg residue 198 and Lys 364 when DNA is bound, indicating direct involvement in binding or complete protection due to a conformational change. Other residues are also seen to be protected when DNA is bound. These studies have provided insight into the structures of these proteins and allow us to correlate known loss of function and carcinogenic mutations to disruptions in these protein structures.
机译:DNA错配修复(MMR)对于维持遗传物质至关重要,并且随着时间的推移,其主要特征一直得到保留。主要蛋白质成分包括MutL家族的成员,而MutL家族中对MMR至关重要的两个酵母成员是MLH1和PMS1。 MMR蛋白的突变与致癌作用有关,可能导致MMR活性完全丧失,这可能是由于这些蛋白的结构变化所致。这些蛋白质的三级结构(尤其是它们的C末端结构域),或它们在不同物种中的同源物,鲜为人知。这项研究的具体目标是(1)研究MLH1和PMS1异二聚体的结构并确定其接触和结合位点; (2)定位酵母DNA修复蛋白PMS1的N末端结构域(NTD)的DNA结合位点。根据这些实验中确定的限制条件,通过化学交联,表面改性,有限的蛋白水解,质谱表征和分子建模相结合,实现了特定目标。表面改性研究表明,赖氨酸残基位于PMS1和MLH1的表面上。这些研究暗示MLH1的残基665、675和704与异二聚化有关。交联研究表明MLH1中的残基之间的最大间隔为12A。为MLH1的N末端域创建了一个同源模型。为MLH1的C端结构域创建了工作模型,并使用二级结构预测,序列比对和获得的数据对潜在的异二聚体相互作用进行了建模。我们提出了酵母和人类中其他MutL同源异源二聚体的相互作用位点。用PMS1 NTD进行的有限的蛋白水解DNA结合研究表明,结合DNA时,Arg 198和Lys 364上没有蛋白水解切割,表明由于构象变化而直接参与结合或完全保护。当结合DNA时,其他残基也被保护。这些研究提供了对这些蛋白质结构的见解,并使我们能够将已知的功能丧失和致癌突变与这些蛋白质结构的破坏联系起来。

著录项

  • 作者

    Cutalo, Jenny M.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Chemistry Biochemistry.; Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号