首页> 外文学位 >Stimuli-responsive protein-based hydrogels by utilizing beta-sheet conformation of silk fibroin as cross-links.
【24h】

Stimuli-responsive protein-based hydrogels by utilizing beta-sheet conformation of silk fibroin as cross-links.

机译:通过利用丝素蛋白的β-折叠构象作为交联,基于刺激的基于蛋白质的水凝胶。

获取原文
获取原文并翻译 | 示例

摘要

Stimuli responsive polymers can provide a variety of applications for biomedical fields such as drug delivery, biotechnology, and chromatography. The interest in these polymers has exponentially increased due to their promising potential. Stimuli-responsive polymers have been utilized in various forms: hydrogels, micelles, modified interfaces, and conjugated solutions. Among them, hydrogels have gained strong attention as biomaterials due to their biocompatibility and biodegradability in the swollen state. The introduction of stimuli-responsive characteristic into hydrogels should provide more versatile applications such as targeted drug delivery, micro or nano scale actuating valves, artificial organs responding to stimuli, and protein or DNA purification. In many applications, better biological materials are needed, particularly the incorporation of two or more functionalities into one material.; One strategy is to develop interpenetrating polymer networks (INPs) in hydrogels. Novel protein-based complex hydrogels were prepared by blending gelatin (Gel) with Bombyx mori silk fibroin (SF) and introducing beta-sheet conformation of SF in their complex networks. The influence of solvent-induced SF crystallization on the properties and structures of these binary protein complexes was determined as functions of blend composition and preparation history. Rheological tests confirmed that the fine beta-sheet crystalline structure successfully governed the Gel/SF complex networks, increasing their viscoelastic properties and sustaining their physical form as hydrogels even at body temperature. The helix-coil transition of gelatin in the Gel/SF complex hydrogels was determined by DSC and rheological tests to be reversible between ambient and body temperatures, so these hydrogels exhibit reversible IPNs/semi-IPNs transitions. This reversible temperature-responsive conformational change of gelatin molecules in Gel/SF complex hydrogels could promote an abrupt swelling increase and a temperature-triggered protein release from the networks at body temperature, which could be utilized for a targeted drug delivery.; These hydrogels show a temperature-responsive gelatin release profile: at 20°C they exhibited no gelatin release and maintained their hydrogel dimensions, but at 37°C they showed time-dependent gelatin release and their hydrogel dimensions decreased.; Protein-synthetic polymer hybrid interpenetrating networks (IPNs) of poly(N-isopropylacrylamide) (PNIPAAm) with Bombyx mori (B. mori) silk fibroin (SF) are described. In these IPNs, SF has the beta-sheet crystalline structure, and shows improved storage and loss moduli. The IPN hydrogels show volume phase transition behavior at the same temperature and NaCl concentration as pure PNIPAAm hydrogels. The PNIPAAm/SF IPNs retain the swelling kinetics of PNIPAAm and show increased deswelling kinetics, with a mechanism whereby the internal water molecules are rapidly released through the induced beta-sheet networks. The IPNs with SF beta-sheet structure successfully decrease the formation of a skin layer observed in conventional PNIPAAm hydrogels. Therefore, the proposed IPN hydrogels can provide three benefits; improved mechanical property, biocompatibility, and deswelling rates.
机译:刺激响应性聚合物可为生物医学领域(如药物输送,生物技术和色谱法)提供多种应用。由于它们的潜在潜力,对这些聚合物的兴趣呈指数增长。刺激响应性聚合物已以多种形式使用:水凝胶,胶束,修饰的界面和共轭溶液。其中,水凝胶由于在溶胀状态下的生物相容性和生物降解性而作为生物材料受到了广泛的关注。将刺激响应特性引入水凝胶应提供更多用途,例如靶向药物递送,微米或纳米级致动阀,响应刺激的人工器官以及蛋白质或DNA纯化。在许多应用中,需要更好的生物材料,特别是将两种或多种功能结合到一种材料中。一种策略是开发水凝胶中的互穿聚合物网络(INP)。通过将明胶(Gel)与家蚕丝素蛋白(SF)混合并在其复杂网络中引入SF的β-折叠构象来制备新型的基于蛋白质的复杂水凝胶。确定了溶剂诱导的SF结晶对这些二元蛋白质复合物的性质和结构的影响,这是共混物组成和制备历史的函数。流变学测试证实,良好的β-片层晶体结构成功控制了Gel / SF络合物网络,增加了它们的粘弹性,即使在体温下也保持了其作为水凝胶的物理形式。通过DSC和流变学测试确定,在凝胶/ SF复合水凝胶中明胶的螺旋-螺旋转变在环境温度和体温之间是可逆的,因此这些水凝胶表现出可逆的IPN /半IPN转变。 Gel / SF复合水凝胶中明胶分子的这种可逆的温度响应构象变化,可促进体表温度下网络的急剧膨胀增加和温度触发的蛋白质释放,可用于靶向药物输送。这些水凝胶显示出温度响应性的明胶释放曲线:在20°C下,它们不释放明胶,并保持其水凝胶尺寸,但在37°C下,它们显示时间依赖性明胶释放,并且其水凝胶尺寸减小。描述了聚(N-异丙基丙烯酰胺)(PNIPAAm)与家蚕(B. mori)丝心蛋白(SF)的蛋白质合成聚合物互穿网络(IPN)。在这些IPN中,SF具有β-折叠晶体结构,并显示出改善的存储和损耗模量。 IPN水凝胶在与纯PNIPAAm水凝胶相同的温度和NaCl浓度下显示出体积相变行为。 PNIPAAm / SF IPNs保留了PNIPAAm的溶胀动力学并显示出增加的溶胀动力学,其机制是通过诱导的β-折叠网络迅速释放内部水分子。具有SFβ-折叠结构的IPN成功地减少了在常规PNIPAAm水凝胶中观察到的皮肤层的形成。因此,提出的IPN水凝胶可提供三个好处:改善的机械性能,生物相容性和溶胀率。

著录项

  • 作者

    Gil, Eun Seok.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号