首页> 外文学位 >Electron flow and energy conservation in hydrogenotrophic methanogenesis.
【24h】

Electron flow and energy conservation in hydrogenotrophic methanogenesis.

机译:氢营养型甲烷生成中的电子流和能量守恒。

获取原文
获取原文并翻译 | 示例

摘要

Methanogenesis is a globally important process responsible for the generation of >90% of the CH4 present on Earth. Despite this importance, key biochemical details concerning methanogenesis have eluded characterization. Presented here is a global analysis of the bioenergetics and substrate utilization in hydrogenotrophic methanogenesis: the reduction of CO2 to CH 4. It was long thought that hydrogenotrophic methanogenesis proceeded linearly; however, this model fails to take into account how energy conservation occurs. The first step of the pathway is endergonic, but the source of energy to power this reaction was unknown. Results presented here show that the first and last steps are physically and energetically coupled. Hence the methanogenesis pathway is cyclic rather than linear. This presents another problem in that all metabolic cycles must replenish intermediates to guard against decaying flux. This replenishing reaction is facilitated by a membrane-bound hydrogenase activity. Finally, methanogens are thought to require hydrogen for growth. By generating a model for methanogenesis, I show this is not the case: hydrogenotrophic methanogens are capable H2- independent growth in the presence of alternative substrates such as formate. Taken together, these data provide for a model for the biological generation of CH4 through the hydrogenotrophic pathway. Although these data generate a molecular a model for methanogenesis, key details about how the process is regulated remain a mystery. Later chapters of this work describe the early stages of an experimental system to identify elements essential for the regulation and expression of methanogenesis genes.
机译:甲烷生成是全球重要的过程,负责产生地球上90%以上的CH4。尽管具有这种重要性,但关于甲烷生成的关键生化细节仍未定性。这里介绍的是对氢营养型甲烷生成过程中生物能学和底物利用的整体分析:将CO2还原为CH4。长期以来,人们一直认为氢营养型甲烷生成是线性进行的。但是,该模型没有考虑到节能的方式。该途径的第一步是吸收离子,但尚不清楚为该反应提供动力的能源。此处显示的结果表明,第一步和最后一步在物理上和能量上都是耦合的。因此,甲烷生成途径是循环的而不是线性的。这就提出了另一个问题,即所有代谢周期都必须补充中间体以防止通量衰减。膜结合的氢化酶活性促进了这种补充反应。最后,产甲烷菌被认为需要氢气才能生长。通过生成甲烷生成的模型,我发现情况并非如此:在存在其他底物(例如甲酸盐)的情况下,氢营养型甲烷菌能够进行不依赖H2的生长。综上所述,这些数据提供了通过氢营养途径生物生成CH4的模型。尽管这些数据生成了甲烷生成的分子模型,但有关如何调节该过程的关键细节仍是一个谜。这项工作的后续章节介绍了实验系统的早期阶段,该系统可识别甲烷生成基因的调控和表达所必需的元素。

著录项

  • 作者

    Costa, Kyle C.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号