首页> 外文学位 >Thermochemical cycle of a mixed metal oxide for augmentation of solar thermal energy storage using solid particles.
【24h】

Thermochemical cycle of a mixed metal oxide for augmentation of solar thermal energy storage using solid particles.

机译:混合金属氧化物的热化学循环,用于使用固体颗粒增强太阳能热能存储。

获取原文
获取原文并翻译 | 示例

摘要

An exploration was done on the feasibility of storing both sensible and thermochemical energy at high temperatures for concentrated solar power in order to mitigate issues with each type of energy storage alone. Two potential processes were suggested and discussed for use with a solid oxide reaction: an augmented solid particle receiver and a dish system with a gaseous heat transfer fluid and solid blocks of active material.;Thermochemical energy storage using the "hercynite cycle" has been explored using the FACTSage™ Gibbs free energy minimization software, which predicted material compositions and enthalpy changes at conditions of interest. Calculations predict that the hercynite cycle material reduces above 1000°C and <2% O2. The hercynite cycle reduces with a reaction enthalpy of 264.8 kJ/kg 1400°C and <0.5% O2; this is 18.5% of the total sensible energy in the same material from 23°C to 1400°C. The reduction enthalpies were compared to a more limited exergy, which was calculated from 900°C instead of 23°C. The highest fraction of this enthalpy comparison was 66.1% at 950°C at 0% O2, despite the fact that the reduction reaction had less conversion. The thermochemical enthalpy compared favorably to this smaller exergy, indicating that it is useful to match the reaction temperature changes to the temperature range of the process. The isothermal thermochemical enthalpy was predicted to be up to 131.3 kJ/kg, which is 9.2% of the full sensible energy at 1400°C.;Various material formulations were cycled in a TGA/DSC at temperatures between 900°C and 1500°C using argon and air during reduction and oxidation. The observed oxidation enthalpies spanned an order of magnitude, from 10–100 kJ/kg. Isothermal energy storage was demonstrated at 1200°C, resulting in enthalpy values of 32.6 kJ/kg. Mixtures with excess Al2 O3 tended to have lower observed specific heats of reaction due to the additional inert material. The heats of reaction obtained for the oxidation exotherms were lower than equilibrium predictions and it is suggested that side reactions not predicted by well-mixed thermodynamic equilibrium are occurring and contributing to changes the total reaction enthalpy; data from XRD and Raman Spectroscopy indicate that this may be occurring.
机译:为了减轻与单独的每种类型的能量存储有关的问题,已经进行了关于在高温下为集中的太阳能存储敏感的能量和热化学能量的可行性的探索。提出并讨论了与固体氧化物反应一起使用的两个潜在方法:增强的固体颗粒接收器和带有气态传热流体和活性物质固体块的碟形系统。;已经探索了使用“水铁矿循环”的热化学能量存储使用FACTSage™Gibbs自由能最小化软件,该软件可以预测感兴趣条件下的材料组成和焓变。计算预测,在超过1000°C和小于2%的O2的情况下,海藻土循环材料会降低。 1400℃下的反应焓为264.8 kJ / kg,O2 <0.5%,水杨酸循环减少。这是从23°C到1400°C的相同材料中总感测能量的18.5%。将还原焓与更有限的火用进行了比较,该火用是从900°C而不是23°C计算得出的。尽管还原反应的转化率较低,但该焓比较的最高分数在950°C,0%O2时为66.1%。热化学焓优于这种较小的火用,表明将反应温度变化与工艺温度范围相匹配是有用的。预计等温热化学焓将达到131.3 kJ / kg,是1400°C时总感能的9.2%;各种材料配方在900°C至1500°C的温度下在TGA / DSC中循环在还原和氧化过程中使用氩气和空气。观察到的氧化焓跨度为10-100 kJ / kg。等温能量存储在1200°C时被证明,其焓值为32.6 kJ / kg。由于额外的惰性材料,具有过量Al 2 O 3的混合物倾向于具有较低的观察到的反应比热。氧化放热获得的反应热低于平衡预测值,这表明未发生充分混合的热力学平衡无法预测的副反应,这有助于改变总反应焓。 XRD和拉曼光谱的数据表明这可能正在发生。

著录项

  • 作者

    Ehrhart, Brian David.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Chemical.
  • 学位 M.S.
  • 年度 2013
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号